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What Is In Situ Processing?

= Defined:

— Process data while it is generated
— Couple visualization and analysis routines with the simulation code (avoiding file system 1/0)

" Pros:
— No or greatly reduced I/O vs post-hoc processing
— Can access all the data
— Computational power readily available

= Cons:
— More difficult when lacking a priori knowledge of what to visualize/analyze
— Increasing complexity
— Constraints (memory, network)

(Slide Acknowledgement: Hank Childs)
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Important links and contact info:

Ascent Resources:

= Github: https://github.com/alpine-dav/ascent

= Docs: http://ascent-dav.org/

= Tutorial Landing Page: https://www.ascent-dav.org/tutorial/

Contact Info:

Cyrus Harrison: cyrush@lInl.gov
Nicole Marsaglia: marsaglial @lInl.gov
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Ascent is an easy-to-use flyweight in situ visualization
and analysis library for HPC simulations

— Use cases: Making Pictures, Transforming Data, and Capturing Data

= Easy to use in-memory visualization and analysis J I\S ce nt

— Young effort, yet already supports most common visualization operations

—=

\

— Provides a simple infrastructure to integrate custom analysis

— Provides C++, C, Python, and Fortran APIs Visualizations created using Ascent

= Uses a flyweight design targeted at next-generation HPC platforms &3 pgthon“ |_T
— Efficient distributed-memory (MPI) and many-core (CUDA or OpenMP) execution

= N 2
« Demonstrated scaling: In situ filtering and ray tracing across 16,384 GPUs on ?CINEMAJ-
LLNL's Sierra Cluster Extracts supported by Ascent
— Has lower memory requirements than current tools http://ascent-dav.org
— Requires less dependencies than current tools (ex: no OpenGL) https://github.com/Alpine-DAV/ascent
 Builds with@ Spack https://spack.io/ Website and GitHub Repo
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Today we will teach you about Ascent’s APl and capabilities

You will learn:

= How to use Conduit, the foundation of Ascent’s API
= How to get your simulation data into Ascent

= How to tell Ascent what pictures to render and what analysis to execute
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Ascent is ready for common visualization use cases
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Ascent is ready for common analysis use cases
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We are working to integrate and deploy Ascent with
HPC simulation codes (ECP and beyond)
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Ascent connects applications to visualization and analysis
capabilities
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Science Enabling Results: Shock Front Tracking (VISAR)
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Science Enabling Results: Simulation Validation

Radiographs

Acrylic shield (1 mm thick)
Au washer (50 pm thick)
Au grid for spatial calibration S Imu I ate d
63 pm wire spacing -

2 mm

Embedded CHI layer

Be shock tube

Polystyrene ablator (30 um thick) EX p e ri me nta I

Lawrence Livermore National Laboratory N A‘S«‘?ﬁ% 12

LLNL-PRES-827383 National Nuclear Security Administration




cience Enabling Results: WarpX Workflow Tools (Ju

er Labs)
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B conduit_bluepr. 4 days ago
B Y: ascent_actions... 8 days ago The next two cells are as follows:

ﬁ ascent_flow_gr... seconds ago

) asce ol e 1. modify the Ascent action (examples: https://ascent.readthedocs.io/en/latest/Actions/Examples.html)
“a 2. rerender

[ conduit_bluepr... 4 days ago

[ conduit_bluepr... 4 days ago By only modifying and executing only those two cells one can quickly iterate over new visualizations.
(B [ inputs_3d 4 days ago

replay_000400... seconds ago [8]: %%writefile replay_actions.yaml
* Y: replay_actions.... seconds ago this block are data pipelines

#
# each entry in pipelines: executes a series of functions from top to bottom,
# results of prior functions can be used in later calls of the same pipeline

action: "add_pipelines"
pipelines:
slice_field:
f1:
type: "slice"
params:
topology: topo
point: {x: 0.0, y: 0.0, z: 0.0}
normal: {x: 1.0, y: 1.0, z: 0.0}

sampled_particles:
f1:

type: histsampling
params:
field: particle_electrons_uz
bins: 64
sample_rate: 0.80
f2:
type: "clip"
params:
topology: particle_electrons # particle data
multi_plane:
pointl: {x: 0.0, y: 0.0, z: 0.0}
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Science Enabling Results: Rendering At Scale
(2018)

e The 97.8 billion element simulation ran across
16,384 GPUs on 4,096 Nodes

* The simulation application used CUDA via RAJA to
run on the GPUs

* Time-varying evolution of the mixing was visualized
in-situ using Ascent, also leveraging 16,384 GPUs

* Ascent leveraged VTK-m to run visualization
algorithms on the GPUs Visualization of an idealized Inertial
Confinement Fusion (ICF) simulation of
Rayleigh-Taylor instability with two fluids
mixing in a spherical geometry.
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Today we will teach you about Ascent’s APl and capabilities

You will learn:

= How to use Conduit, the foundation of Ascent’s API
= How to get your simulation data into Ascent

= How to tell Ascent what pictures to render and what analysis to execute
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Ascent tutorial examples are outlined in our documentation and
included ready to run in Ascent installs

Docs » Tutorial ) Edit on GitHub

4 N\scent

Tutorial
This tutorial introduces how to use Ascent, including basics about:

Quick Start e Formating mesh data for Ascent

¢ Using Conduit and Ascent’s Conduit-based API

¢ Using and combining Ascent’s core building blocks: Scenes, Pipelines, Extracts, Queries, and
Triggers

8 Tutorial  Using Ascent with the Cloverleaf3D example integration

Ascent User Documentation

Developer Documentation

Tutorial Setup
Introduction to Ascent Ascent installs include standalone C++, Python, and Python-based Jupyter notebook examples for
this tutorial. You can find the tutorial source code and notebooks in your Ascent install directory

CloverLeaf3D Ascent Demos
under examples/ascent/tutorial/ascent_intro/ and the Cloverleaf3D demo files under

examples/ascent/tutorial/cloverleaf_demos/ .

Releases
Publications and Presentations

http://ascent-dav.org
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http://ascent-dav.org/

Ascent tutorial examples are outlined in our documentation and

included ready to run in Ascent installs

A4 N\scent

= http://ascent-dav.org

Quick Start

Ascent User Documentation

n CI |C k on ”Tu to rl 3 I” Developer Documentation

O Tutorial
U

al Setup
Introduction to Ascent

CloverLeaf3D Ascent Demos

Releases
Publications and Presentations
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Ascent’s interface provides five top-level functions

open() / close()

— |nitialize and finalize an Ascent instance

publish()

— Pass your simulation data to Ascent

Ascent ascent;
ascent.open();

execute() ascent.publish(data);

— Tell Ascent what to do ascent.execute(actions);
ascent.info(details);

= info()
— Ask for details about Ascent’s last operation

ascent.close():

The publish(), execute(), and info() methods take a Conduit tree as an argument.
What is a Conduit tree?
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Conduit provides intuitive APIs for in-memory data description
and exchange

= Provides an intuitive API for in-memory data description Q
— Enables human-friendly hierarchical data organization CONDUIT

umElem
O numNode
Qume
Thpotoay O nstnctured ©
Q coming o
0.0, 10.0] °0 O data
O conteing ]
+O O data
O contering
vo O deta
o0t @

OOOOOOOO

— Can describe in-memory arrays without copying

— Provides C++, C, Python, and Fortran APIs S

oooooooo

= Provides common conventions for exchanging complex data _ o -
Hierarchical in-memory data description

— Shared conventions for passing complex data (e.g. Simulation Meshes) enable
modular interfaces across software libraries and simulation applications

= Provides easy to use 1/0 interfaces for moving and storing : f
data Conventions for sharing in-memory mesh data

http://software.lInl.gov/conduit
http://github.com/lInl/conduit

Website and GitHub Repo

— Enables use cases like binary checkpoint restart

— Supports moving complex data with MPI (serialization)
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http://software.llnl.gov/conduit
http://github.com/llnl/conduit

Ascent uses Conduit to provide a flexible and extendable API

= Conduit underpins Ascent’s support for C++, C, Python, and Fortran interfaces

= Conduit also enables using YAML to specify Ascent actions

= Conduit’s zero-copy features help couple existing simulation data structures

= Conduit Blueprint provides a standard for how to present simulation meshes

Learning Ascent equates to learning how to construct and pass Conduit trees

that encode your data and your expectations.
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To start, let’s look at the Ascent “First Light” Example in C++

= https://ascent.readthedocs.io/en/latest/Tutorial Intro First Light.html

#include <iostream>

#include "ascent.hpp"
#include "conduit_blueprint.hpp"

using namespace ascent;
using namespace conduit;

int main(int argc, char #*xargv)

{
// echo info about how ascent was configured
std::cout << ascent::about() << std::endl;

// create conduit node with an example mesh using
// conduit blueprint's braid function
// ref: https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html#braid

// things to explore:
// changing the mesh resolution

Node mesh;
conduit::blueprint::mesh::examples::braid("hexs",
50,
50,
50,
mesh) ;

This code generates an example mesh

Lawrence Livermore National Laboratory N A‘
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https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html

To start, let’s look at the Ascent “First Light” Example in C++

= https://ascent.readthedocs.io/en/latest/Tutorial Intro First Light.html

// create an Ascent instance
Ascent a;

Create an Ascent instance and set it up

// open ascent
a.open();

// publish mesh data to ascent
a.publish(mesh);
Now Ascent has access to our mesh data

Lawrence Livermore National Laboratory N A‘S’Q‘i‘g 22
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https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html

To start, let’s look at the Ascent “First Light” Example in C++

= https://ascent.readthedocs.io/en/latest/Tutorial Intro First Light.html

/7
// Ascent's interface accepts "actions"
// that to tell Ascent what to execute

Create a tree that describes the actions we
- actions; want Ascent to do

Node &add_act = actions.append();
add_act["action"] = "add_scenes";

// Create an action that tells Ascent to:
// add a scene (sl1) with one plot (pl)

// that will render a pseudocolor of

// the mesh field ‘braid’

Node & scenes = add_act["scenes"];

action: "add_scenes"
scenes:

// things to explore:
// changing plot type (mesh)

// changing field name (for this dataset: radial)
scenes["s1/plots/pl/type"] = “pseudocolor";
scenes["s1/plots/pl/field"] = "braid";

// set the output file name (ascent will add ".png")
scenes["s1/image_name"] = "out_first_light_render_3d";

type: "pseudocolor"
field: "braid"
image_name: "out_first_light_render_3d"

// view our full actions tree Equivalent YAML DescriptiOn

std::cout << actions.to_yaml() << std::endl;

. . ( "‘I
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https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html

To start, let’s look at the Ascent “First Light” Example in C++

= https://ascent.readthedocs.io/en/latest/Tutorial Intro First Light.html

// execute the actions
a.execute(actions);
Tell Ascent to execute these actions

Rendered Result!

B 0 ( "‘I
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https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html

Ascent’s interface provides five composable building blocks

Scenes Pipelines Extracts
(Render Pictures) (Transform Data) (Capture Data)
Queries Triggers
(Ask Questions) (Adapt Actions)

The tutorial provides examples for all of these.

. . F
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For the reminder of the tutorial, we will run the Ascent Tutorial
examples using Jupyter Notebooks

® O @ 5 o01ascentfirstlight- Jupyter X =+

& C @ localhost:8888/notebooks/01_ascent_first_light.ipynb e Guest
: jupyter 01_ascent_first_light (autosaved) ﬁ Logout
File Edit View Insert Cell Kernel Widgets Help Not Trusted | & \Pythona o
B+ < & B 4+ & PR B C MW Code v | =
First Light Example

Render a sample dataset using Ascent

To start, we run a basic “First Light” example to generate an image. This example renders the an example dataset using ray
casting to create a pseudocolor plot. The dataset is one of the built-in Conduit Mesh Blueprint examples, in this case an
unstructured mesh composed of hexagons.

In [ ]: # cleanup any old results
!./cleanup.sh
# conduit + ascent imports
import conduit
import conduit.blueprint
import ascent

# Jupyter imports

from IPython.display import Image

# helper we use when displaying results in the notebook
img_display width = 500

In [ ]: # create conduit node with an example mesh using conduit blueprint's braid function
# ref: https://llnl-conduit.readthedocs.io/en/latest/blueprint mesh.html#braid

# things to explore:
# changing the mesh resolution

mesh = conduit.Node()
conduit.blueprint.mesh.examples.braid("hexs",
50,
50,
50,
mesh)

In [ ]: # create an Ascent instance
a = ascent.Ascent()

# set options to allow errors propagate to python
+ nEe = aonduis NMada )

. . ’Ql
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You can run our tutorial examples using cloud hosted Jupyter
Lab servers

Start here:

https://www.ascent-dav.org/tutorial

m servers x _

© & https://www.ascent-dav.org/tutorial/ oo w

Ascent Tutorial Landing Page

Click here for the Jupyter Cloud Notebook Servers Landing Page

If you have Docker installed, you can also run the tutorial container using:
docker run -p 8888:8888 -t -i alpinedav/ascent-jupyter

Then open http://localhost:8888

The Notebook server password is learn

See the Ascent Tutorial Docker docs for more details.
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https://www.ascent-dav.org/tutorial/

Thanks!

Ascent Resources:

= Github: https://github.com/alpine-dav/ascent

= Docs: http://ascent-dav.org/

= Tutorial Landing Page: https://www.ascent-dav.org/tutorial/

Contact Info:

Cyrus Harrison: cyrush@lInl.gov
Nicole Marsaglia: marsaglial @lInl.gov
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