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What is In situ processing?

§ Defined: 
— Process data while it is generated
— Couple visualization and analysis routines with the simulation code (avoiding file system I/O)

§ Pros:
— No or greatly reduced I/O vs post-hoc processing
— Can access all the data
— Computational power readily available

§ Cons:
— Must know what you want to look for a priori
— Increasing complexity
— Constraints (memory, network)
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Ascent is a part of a broader coordinated visualization and data 
analysis ecosystem
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In situ processing works in various ways

Image credit: 
“A Terminology for In Situ Visualization and 
Analysis Systems,”
International Journal for High Performance 
Computing Applications, Nov 2020
(59 authors) 

= most common way to use Ascent

= possible way to use Ascent
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§ Easy to use in-memory visualization and analysis
— Use cases: Making Pictures, Transforming Data, and Capturing Data

— Young effort, yet already supports most common visualization operations

— Provides a simple infrastructure to integrate custom analysis

— Provides C++, C, Python, and Fortran APIs

§ Uses a flyweight design targeted at next-generation HPC platforms
— Efficient distributed-memory (MPI) and many-core (CUDA or OpenMP) execution 

• Demonstrated scaling:  In situ filtering and ray tracing across 16,384 GPUs on 
LLNL's Sierra Cluster

— Has lower memory requirements than current tools

— Requires less dependencies than current tools (ex: no OpenGL)
• Builds with         Spack https://spack.io/

Ascent is an easy-to-use flyweight in situ visualization
and analysis library for HPC simulations

Visualizations created using Ascent

Extracts supported by Ascent

http://ascent-dav.org
https://github.com/Alpine-DAV/ascent

Website and GitHub Repo

https://spack.io/
http://ascent-dav.org/
https://github.com/Alpine-DAV/ascent
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Ascent is ready for common visualization use cases
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Ascent development is supported by the ECP ALPINE S&T project 
and LLNL’s WSC program

Scope & Intent R&D Themes Delivery Process Target ECP Users Support Model

Deliver in situ 
visualization and 

analysis algorithms and 
infrastructure. 

1) Automated in situ 
massive data 

reduction
algorithms

Regular releases of 
software and 

documentation, open 
access to production 

software from GitHub

All ECP applications. 
Focused delivery for co-

design centers 
applications.

Ongoing developer 
support. Dedicated 
email, issue tracking 

portals, comprehensive 
web-based 

documentation, regular 
tutorials.

2) Portable, scalable, 
performant 

infrastructure 

Ascent is one of the infrastructure thrusts for ECP ALPINE 
and a key part of LLNL WSC’s in situ strategy

ECP ALPINE (2.3.4.12) 

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the 
U.S. Department of Energy’s Office of Science and National Nuclear Security Administration, 
responsible for delivering a capable exascale ecosystem, including software, applications, and hardware 
technology, to support the nation’s exascale computing imperative.
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We are working to integrate and deploy Ascent with 
HPC simulation codes (ECP and beyond)
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Ascent connects applications to visualization and analysis 
capabilities
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Science Enabling Results: Shock Front Tracking (VISAR)

Shock position tracked 
in Ascent

Velocity interferometer system for any reflector (VISAR)
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Science Enabling Results: Simulation Validation

Experimental

Radiographs

Simulated
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Science Enabling Results: WarpX Workflow Tools (Jupyter Labs)

Jupyter Labs Interface Resulting Image
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Science Enabling Results: Rendering At Scale

Visualization of an idealized Inertial 
Confinement Fusion (ICF) simulation of 

Rayleigh-Taylor instability with two fluids 
mixing in a spherical geometry. 

• The 97.8 billion element simulation ran across 
16,384 GPUs on 4,096 Nodes

• Time-varying evolution of the mixing was visualized 
in-situ using Ascent, also leveraging 16,384 GPUs

• Ascent leveraged VTK-m to run visualization 
algorithms on the GPUs
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You will learn:

§ How to use Conduit, the foundation of Ascent’s API

§ How to get your simulation data into Ascent

§ How to tell Ascent what pictures to render and what analysis to execute

Today we will teach you about Ascent’s API and capabilities
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Ascent tutorial examples are outlined in our documentation and 
included ready to run in Ascent installs

http://ascent-dav.org

http://ascent-dav.org/
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Ascent tutorial examples are outlined in our documentation and 
included ready to run in Ascent installs

§ http://ascent-dav.org

§ Click on “Tutorial”
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§ open() / close() 
— Initialize and finalize an Ascent instance

§ publish()
— Pass your simulation data to Ascent

§ execute()
— Tell Ascent what to do

§ info()
— Ask for details about Ascent’s last operation

Ascent’s interface provides five top-level functions

The publish(), execute() and info() methods take a Conduit tree as an argument.
What is a Conduit tree?
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§ Provides an intuitive API for in-memory data description
— Enables human-friendly hierarchical data organization

— Can describe in-memory arrays without copying

— Provides C++, C, Python, and Fortran APIs

§ Provides common conventions for exchanging complex data
— Shared conventions for passing complex data (e.g. Simulation Meshes) enable 

modular interfaces across software libraries and simulation applications

§ Provides easy to use I/O interfaces for moving and storing 
data
— Enables use cases like binary checkpoint restart

— Supports moving complex data with MPI (serialization)

Conduit provides intuitive APIs for in-memory data description 
and exchange

http://software.llnl.gov/conduit
http://github.com/llnl/conduit

Website and GitHub Repo

Hierarchical in-memory data description

Conventions for sharing in-memory mesh data

http://software.llnl.gov/conduit
http://github.com/llnl/conduit
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§ Conduit underpins Ascent’s support for C++, C, Python, and Fortran interfaces

§ Conduit also enables using YAML to specify Ascent actions

§ Conduit’s zero-copy features help couple existing simulation data structures

§ Conduit Blueprint provides a standard for how to present simulation meshes

Ascent uses Conduit to provide a flexible and extendable API   

Learning Ascent equates to learning how to construct and pass Conduit trees 
that encode your data and your expectations. 
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To start, let’s look at the Ascent “First Light” Example in C++

§ https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html

This code generates an example mesh

https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html
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To start, let’s look at the Ascent “First Light” Example in C++

§ https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html

Create an Ascent instance and set it up

Now Ascent has access to our mesh data

https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html
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To start, let’s look at the Ascent “First Light” Example in C++

§ https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html

Create a tree that describes the actions we 
want Ascent to do

Equivalent YAML Description

https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html
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To start, let’s look at the Ascent “First Light” Example in C++

§ https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html

Tell Ascent to execute these actions

Rendered Result!

https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html
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Ascent’s interface provides five composable building blocks

Scenes
(Render Pictures)

Pipelines
(Transform Data)

Extracts
(Capture Data)

Queries
(Ask Questions)

Triggers
(Adapt Actions)

The tutorial provides examples for all of these.
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For the reminder of the tutorial, we will run the Ascent Tutorial 
examples using Jupyter Notebooks
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Start here:

https://www.ascent-dav.org/tutorial/

You can follow along using cloud hosted Jupyter Lab servers

https://www.ascent-dav.org/tutorial/
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