
LLNL-PRES-817787
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Ascent: Flyweight In Situ Visualization and
Analysis for HPC Simulations
ECP Web Tutorial

December 17th, 2020

Matt Larsen (LLNL), Cyrus Harrison (LLNL), Hank Childs (Univ of Oregon)

2
LLNL-PRES-817787

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC

This research was supported by the Exascale Computing Project (17-SC-20-SC),
a joint project of the U.S. Department of Energy’s Office of Science and National Nuclear
Security Administration, responsible for delivering a capable exascale ecosystem, including
software, applications, and hardware technology, to support the
nation’s exascale computing imperative.

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

3
LLNL-PRES-817787

What is In situ processing?

§ Defined:
— Process data while it is generated
— Couple visualization and analysis routines with the simulation code (avoiding file system I/O)

§ Pros:
— No or greatly reduced I/O vs post-hoc processing
— Can access all the data
— Computational power readily available

§ Cons:
— Must know what you want to look for a priori
— Increasing complexity
— Constraints (memory, network)

4
LLNL-PRES-817787

Ascent is a part of a broader coordinated visualization and data
analysis ecosystem

Apps

Cinema

Traditional
Algorithms

Rendering

New
Algorithms

Output/ArtifactsIn situ
Infrastructure

In situ
Algorithms

Traditional
Output

…

VTK-m

Post
Processing

ParaView

VisIt

…

ADIOS,

Ascent,

ParaView
Catalyst,

SENSEI,

VisIt
LibSim

ZFP Compression

5
LLNL-PRES-817787

In situ processing works in various ways

Image credit:
“A Terminology for In Situ Visualization and
Analysis Systems,”
International Journal for High Performance
Computing Applications, Nov 2020
(59 authors)

= most common way to use Ascent

= possible way to use Ascent

6
LLNL-PRES-817787

§ Easy to use in-memory visualization and analysis
— Use cases: Making Pictures, Transforming Data, and Capturing Data

— Young effort, yet already supports most common visualization operations

— Provides a simple infrastructure to integrate custom analysis

— Provides C++, C, Python, and Fortran APIs

§ Uses a flyweight design targeted at next-generation HPC platforms
— Efficient distributed-memory (MPI) and many-core (CUDA or OpenMP) execution

• Demonstrated scaling: In situ filtering and ray tracing across 16,384 GPUs on
LLNL's Sierra Cluster

— Has lower memory requirements than current tools

— Requires less dependencies than current tools (ex: no OpenGL)
• Builds with Spack https://spack.io/

Ascent is an easy-to-use flyweight in situ visualization
and analysis library for HPC simulations

Visualizations created using Ascent

Extracts supported by Ascent

http://ascent-dav.org
https://github.com/Alpine-DAV/ascent

Website and GitHub Repo

https://spack.io/
http://ascent-dav.org/
https://github.com/Alpine-DAV/ascent

7
LLNL-PRES-817787

Ascent is ready for common visualization use cases

ContourThreshold Slice

Clips

Iso-Volume

Pseudocolor Volume Mesh

Rendering

8
LLNL-PRES-817787

Ascent development is supported by the ECP ALPINE S&T project
and LLNL’s WSC program

Scope & Intent R&D Themes Delivery Process Target ECP Users Support Model

Deliver in situ
visualization and

analysis algorithms and
infrastructure.

1) Automated in situ
massive data

reduction
algorithms

Regular releases of
software and

documentation, open
access to production

software from GitHub

All ECP applications.
Focused delivery for co-

design centers
applications.

Ongoing developer
support. Dedicated
email, issue tracking

portals, comprehensive
web-based

documentation, regular
tutorials.

2) Portable, scalable,
performant

infrastructure

Ascent is one of the infrastructure thrusts for ECP ALPINE
and a key part of LLNL WSC’s in situ strategy

ECP ALPINE (2.3.4.12)

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the
U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and hardware
technology, to support the nation’s exascale computing imperative.

9
LLNL-PRES-817787

We are working to integrate and deploy Ascent with
HPC simulation codes (ECP and beyond)

MARBL
INT-595

NekRS
INT-398

Nyx
INT-179

WarpX
INT-825

AMRWind
INT-1350

Pele
INT-133

SW4
INT-190

INT-755 INT-323 INT-311

10
LLNL-PRES-817787

Ascent connects applications to visualization and analysis
capabilities

MARBL NekRS Nyx WarpX AMRWind Pele SW4

Anomaly
Detection Sampling Optimal

Viewpoint Cinema Jupyter
Notebooks

Derived
Quantities

VTK-m Data
Binning

Contour
Trees

Lagrangian
Flow ParaViewADIOS HDF5

11
LLNL-PRES-817787

Science Enabling Results: Shock Front Tracking (VISAR)

Shock position tracked
in Ascent

Velocity interferometer system for any reflector (VISAR)

12
LLNL-PRES-817787

Science Enabling Results: Simulation Validation

Experimental

Radiographs

Simulated

13
LLNL-PRES-817787

Science Enabling Results: WarpX Workflow Tools (Jupyter Labs)

Jupyter Labs Interface Resulting Image

14
LLNL-PRES-817787

Science Enabling Results: Rendering At Scale

Visualization of an idealized Inertial
Confinement Fusion (ICF) simulation of

Rayleigh-Taylor instability with two fluids
mixing in a spherical geometry.

• The 97.8 billion element simulation ran across
16,384 GPUs on 4,096 Nodes

• Time-varying evolution of the mixing was visualized
in-situ using Ascent, also leveraging 16,384 GPUs

• Ascent leveraged VTK-m to run visualization
algorithms on the GPUs

15
LLNL-PRES-817787

You will learn:

§ How to use Conduit, the foundation of Ascent’s API

§ How to get your simulation data into Ascent

§ How to tell Ascent what pictures to render and what analysis to execute

Today we will teach you about Ascent’s API and capabilities

16
LLNL-PRES-817787

Ascent tutorial examples are outlined in our documentation and
included ready to run in Ascent installs

http://ascent-dav.org

http://ascent-dav.org/

17
LLNL-PRES-817787

Ascent tutorial examples are outlined in our documentation and
included ready to run in Ascent installs

§ http://ascent-dav.org

§ Click on “Tutorial”

18
LLNL-PRES-817787

§ open() / close()
— Initialize and finalize an Ascent instance

§ publish()
— Pass your simulation data to Ascent

§ execute()
— Tell Ascent what to do

§ info()
— Ask for details about Ascent’s last operation

Ascent’s interface provides five top-level functions

The publish(), execute() and info() methods take a Conduit tree as an argument.
What is a Conduit tree?

19
LLNL-PRES-817787

§ Provides an intuitive API for in-memory data description
— Enables human-friendly hierarchical data organization

— Can describe in-memory arrays without copying

— Provides C++, C, Python, and Fortran APIs

§ Provides common conventions for exchanging complex data
— Shared conventions for passing complex data (e.g. Simulation Meshes) enable

modular interfaces across software libraries and simulation applications

§ Provides easy to use I/O interfaces for moving and storing
data
— Enables use cases like binary checkpoint restart

— Supports moving complex data with MPI (serialization)

Conduit provides intuitive APIs for in-memory data description
and exchange

http://software.llnl.gov/conduit
http://github.com/llnl/conduit

Website and GitHub Repo

Hierarchical in-memory data description

Conventions for sharing in-memory mesh data

http://software.llnl.gov/conduit
http://github.com/llnl/conduit

20
LLNL-PRES-817787

§ Conduit underpins Ascent’s support for C++, C, Python, and Fortran interfaces

§ Conduit also enables using YAML to specify Ascent actions

§ Conduit’s zero-copy features help couple existing simulation data structures

§ Conduit Blueprint provides a standard for how to present simulation meshes

Ascent uses Conduit to provide a flexible and extendable API

Learning Ascent equates to learning how to construct and pass Conduit trees
that encode your data and your expectations.

21
LLNL-PRES-817787

To start, let’s look at the Ascent “First Light” Example in C++

§ https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html

This code generates an example mesh

https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html

22
LLNL-PRES-817787

To start, let’s look at the Ascent “First Light” Example in C++

§ https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html

Create an Ascent instance and set it up

Now Ascent has access to our mesh data

https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html

23
LLNL-PRES-817787

To start, let’s look at the Ascent “First Light” Example in C++

§ https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html

Create a tree that describes the actions we
want Ascent to do

Equivalent YAML Description

https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html

24
LLNL-PRES-817787

To start, let’s look at the Ascent “First Light” Example in C++

§ https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html

Tell Ascent to execute these actions

Rendered Result!

https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html

25
LLNL-PRES-817787

Ascent’s interface provides five composable building blocks

Scenes
(Render Pictures)

Pipelines
(Transform Data)

Extracts
(Capture Data)

Queries
(Ask Questions)

Triggers
(Adapt Actions)

The tutorial provides examples for all of these.

26
LLNL-PRES-817787

For the reminder of the tutorial, we will run the Ascent Tutorial
examples using Jupyter Notebooks

27
LLNL-PRES-817787

Start here:

https://www.ascent-dav.org/tutorial/

You can follow along using cloud hosted Jupyter Lab servers

https://www.ascent-dav.org/tutorial/

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the
U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and
hardware technology, to support the nation’s exascale computing imperative.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC

