
LLNL-PRES-842096
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Conduit
A Successful Strategy for Describing and Sharing Data In Situ
https://github.com/llnl/conduit

ISAV 2022 Cyrus Harrison, Matt Larsen, Brian Ryujin, Adam Kunen,
Arlie Capps, Justin Privitera, and other Conduit contributors.Sunday November 13th, 2022

https://github.com/llnl/conduit

2
LLNL-PRES-842096

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and
hardware technology, to support the nation’s exascale computing imperative.

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

3
LLNL-PRES-842096

§ Data representation and coupling between scientific libraries is a key challenge to building a vibrant
ecosystem of HPC simulation tools. From bespoke data structures to hundreds of file-based data models, the
myriad of possible choices involved both enables key features and blocks adoption of others. Connecting data
between code bases requires agreeing on or adapting between data representations. While in some cases
this process is trivial, for more complicated cases, adapting data becomes a costly barrier. Conduit was
designed within this context to help meet the key challenge of sharing data across HPC simulation tools by
providing a dynamic API to describe in-memory data. It supports coupling simulations and connecting
simulations to analysis and I/O libraries.

§ Conduit is an open-source project from Lawrence Livermore National Laboratory. It started in 2013 and has
evolved through co-design with simulation applications and in situ tools since. Conduit is now an established
part of LLNL’s simulation data management strategy and has been adopted as the mesh-data interface for
DOE community in situ visualization tools. While Conduit has been discussed briefly in prior in situ research,
this paper provides a broader overview of Conduit, background on the evolution of the project, and details on
recently added features relevant to in situ use cases.

Abstract

4
LLNL-PRES-842096

§ Intro
§ Conduit Node
§ Relay
§ Blueprint
§ Evolution
§ Conclusion

Outline

5
LLNL-PRES-842096

Where we started:
Pain with sharing mesh data between simulations and tools

§ Common approaches in the early 2010s:
— Bespoke packed data arrays
— Static file-based I/O Data Model APIs

§ Both approaches were hard to extend:
— Strict APIs lacked naming flexibly
— Interpreting bespoke arrays was error prone
— Data description was tied to file-based I/O

This pain motived us to create an `in-memory` first approach to data sharing

6
LLNL-PRES-842096

§ Provides an intuitive API for in-memory data description
— Enables human-friendly hierarchical data organization

— Can describe in-memory arrays without copying

— Provides C++, C, Python, and Fortran APIs

§ Provides common conventions for exchanging complex data
— Shared conventions for passing complex data (e.g. Simulation Meshes) enable

modular interfaces across software libraries and simulation applications

§ Provides easy to use I/O interfaces for moving and storing
data
— Enables use cases like binary checkpoint restart

— Supports moving complex data with MPI (serialization)

Conduit provides intuitive APIs for in-memory data description
and exchange

http://software.llnl.gov/conduit
http://github.com/llnl/conduit

Website and GitHub Repo

Hierarchical in-memory data description

Conventions for sharing in-memory mesh data

Intro

http://software.llnl.gov/conduit
http://github.com/llnl/conduit

7
LLNL-PRES-842096

Projects are leveraging Conduit to support a wide range of
capabilities

§ Creating in-memory data stores

§ Checkpoint restart of simulation data

§ Conduit Node/YAML/JSON based:
— Data APIs
— User APIs

§ Tree + Path-based I/O and partial I/O
with:
— YAML/JSON
— HDF5

§ Moving complex data with MPI

§ Distributing work with MPI

§ Sharing ad-hoc data between programs
written in multiple languages
(both in-memory and via files)

§ Sharing simulation mesh data
(both in-memory and via files)

§ Transforming mesh data (topology
changes, partitioning, flattening, etc)

Intro

8
LLNL-PRES-842096

Conduit’s Relay and Blueprint libraries provide features built on
top of Conduit’s core data model

Implements interfaces to
Conduit’s in-memory data
model

• Core Objects
• YAML/JSON parsing
• Basic I/O
• Basic transforms

Conduit
Supports shared higher-level
conventions for using Conduit
to represent data

• Computational Meshes
• Multi-component Arrays
• One-to-many Relations
• Example Meshes
• Mesh Transforms

Blueprint
Provides advanced I/O
features built on top of
Conduit’s data model

• File-based I/O: HDF5, Silo
• MPI
• WebSockets
• ZFP

Relay

Intro

9
LLNL-PRES-842096

The heart of Conduit is a hierarchical variant type: Node

Implements interfaces to
Conduit’s in-memory data
model

• Core Objects
• YAML/JSON parsing
• Basic I/O
• Basic transforms

Conduit

Conduit Node

10
LLNL-PRES-842096

conduit::Node provides three core features:

§ An Array Representation
— Bitwidth-style Type
— Size, Offset, Stride, Element Bytes, Endianness

§ Zero-Copy Support
— Owned set() vs External Data set_external()

§ A Tree-based Hierarchy
— Dynamic path-based creation and access
— Compact and Contiguous Tree Properties

The heart of Conduit is a hierarchical variant type: Node

Conduit Node

11
LLNL-PRES-842096

A conduit::Node acts as one of following basic roles:
§ Object: An ordered associative array mapping names to children

§ List: An ordered list of unnamed children

§ Leaf: Scalar or 1D Array of bitwidth-specified primitives:
— Signed Integers: int8, int16, int32, int64
— Unsigned Integers: uint8, uint16, uint32, uint64
— Floating Point Numbers: float32, float64

— Strings: char8_str

§ Empty: No data

The heart of Conduit is a hierarchical variant type: Node

Experience with NumPy and JSON motivated Conduit’s data model

Conduit Node

12
LLNL-PRES-842096

The heart of Conduit is a hierarchical variant type: Node

Let's look at a simple C++ example expressing a hierarchy …

Conduit Node

13
LLNL-PRES-842096

The heart of Conduit is a hierarchical variant type: Node

// define our data arrays
double x_coords[5] = { -1.0, 0.0, 0.0, 0.0, 1.0 };
double y_coords[5] = { 0.0, -1.0, 0.0, 1.0, 0.0 };
double z_coords[5] = { 0.0, 0.0, 1.0, 0.0, 0.0 };
int connectivity[8] = { 0, 1, 3, 2, 4, 3, 1, 2 };
double density[2] = { 1.0, 2.0};

Conduit Node

Data Arrays

14
LLNL-PRES-842096

The heart of Conduit is a hierarchical variant type: Node

// define our data arrays
double x_coords[5] = { -1.0, 0.0, 0.0, 0.0, 1.0 };
double y_coords[5] = { 0.0, -1.0, 0.0, 1.0, 0.0 };
double z_coords[5] = { 0.0, 0.0, 1.0, 0.0, 0.0 };
int connectivity[8] = { 0, 1, 3, 2, 4, 3, 1, 2 };
double density[2] = { 1.0, 2.0};
// create our tree
conduit::Node mesh;

Conduit Node

Create a Node

15
LLNL-PRES-842096

The heart of Conduit is a hierarchical variant type: Node

// define our data arrays
double x_coords[5] = { -1.0, 0.0, 0.0, 0.0, 1.0 };
double y_coords[5] = { 0.0, -1.0, 0.0, 1.0, 0.0 };
double z_coords[5] = { 0.0, 0.0, 1.0, 0.0, 0.0 };
int connectivity[8] = { 0, 1, 3, 2, 4, 3, 1, 2 };
double density[2] = { 1.0, 2.0};
// create our tree
conduit::Node mesh;
mesh["coordsets/coords/type"] = "explicit";

Conduit Node

Add data
Slashes in paths

create a hierarchy

16
LLNL-PRES-842096

The heart of Conduit is a hierarchical variant type: Node

// define our data arrays
double x_coords[5] = { -1.0, 0.0, 0.0, 0.0, 1.0 };
double y_coords[5] = { 0.0, -1.0, 0.0, 1.0, 0.0 };
double z_coords[5] = { 0.0, 0.0, 1.0, 0.0, 0.0 };
int connectivity[8] = { 0, 1, 3, 2, 4, 3, 1, 2 };
double density[2] = { 1.0, 2.0};
// create our tree
conduit::Node mesh;
mesh["coordsets/coords/type"] = "explicit";
mesh["coordsets/coords/values/x"].set_external(x_coords, 5);
mesh["coordsets/coords/values/y"].set_external(y_coords, 5);
mesh["coordsets/coords/values/z"].set_external(z_coords, 5);

Conduit Node

Add data
set_external() zero
copies existing data

17
LLNL-PRES-842096

The heart of Conduit is a hierarchical variant type: Node

// define our data arrays
double x_coords[5] = { -1.0, 0.0, 0.0, 0.0, 1.0 };
double y_coords[5] = { 0.0, -1.0, 0.0, 1.0, 0.0 };
double z_coords[5] = { 0.0, 0.0, 1.0, 0.0, 0.0 };
int connectivity[8] = { 0, 1, 3, 2, 4, 3, 1, 2 };
double density[2] = { 1.0, 2.0};
// create our tree
conduit::Node mesh;
mesh["coordsets/coords/type"] = "explicit";
mesh["coordsets/coords/values/x"].set_external(x_coords, 5);
mesh["coordsets/coords/values/y"].set_external(y_coords, 5);
mesh["coordsets/coords/values/z"].set_external(z_coords, 5);
mesh["topologies/topo/type"] = "unstructured";
mesh["topologies/topo/coordset"] = "coords";
mesh["topologies/mesh/elements/shape"] = "tet";
mesh["topologies/mesh/elements/connectivity"].set_external(connectivity, 8);
mesh["fields/density/association"] = "element";
mesh["fields/density/topology"] = ”topo";
mesh["fields/density/values"].set_external(density, 2);
// print our tree
std::cout << mesh.to_yaml() << std::endl;

Conduit Node

18
LLNL-PRES-842096

The heart of Conduit is a hierarchical variant type: Node

coordsets:
coords:
type: "explicit"
values:
x: [-1.0, 0.0, 0.0, 0.0, 1.0]
y: [0.0, -1.0, 0.0, 1.0, 0.0]
z: [0.0, 0.0, 1.0, 0.0, 0.0]

topologies:
topo:
type: "unstructured"
coordset: "coords"
elements:
shape: "tet"
connectivity: [0, 1, 3, 2, 4, 3, 1, 2]

fields:
density:
association: "element”
topology: ”topo"
values: [1.0, 2.0]

Example YAML Output

Conduit Node

19
LLNL-PRES-842096

The heart of Conduit is a hierarchical variant type: Node

// examples of accessing data from leave Node
// exact type pointer access
double * zs_ptr = mesh["coordsets/coords/values/x"].value();
// exact type array access
float64_array zs_arr = mesh["coordsets/coords/values/x"].value();
// coerced type view access
float32_accessor ss_acc = mesh["coordsets/coords/values/x"].value();

for(int i = 0; i < zs_arr.dtype().number_of_elements(); i++)
{

std::cout << " " << i << "]"
<< " ptr: " << zs_ptr[i]
<< " arr: " << zs_arr[i]
<< " acc: " << zs_acc[i] << std::endl;

}

Conduit Node

[0] ptr: 0 arr: 0 acc: 0
[1] ptr: 0 arr: 0 acc: 0
[2] ptr: 1 arr: 1 acc: 1
[3] ptr: 0 arr: 0 acc: 0
[4] ptr: 0 arr: 0 acc: 0

C++ Node Leaf Access
Example Output

20
LLNL-PRES-842096

Beyond setup and access methods, Node also provides
methods to help you easily process and compare trees

§ Inspect the Memory layout of
— Leaves
— Entire Trees

§ Print Tree Summaries

§ Calculate Leaf Summary Metrics

§ Compact / Serialize Trees

§ Iterate over Children

§ Calculate Tree Differences
(`diff` with adjustable tolerance)

§ Parse and Create
— YAML
— JSON

Conduit Node

21
LLNL-PRES-842096

The Conduit Relay library provides advanced I/O features built
on top of Conduit’s data model

Provides advanced I/O
features built on top of
Conduit’s data model

• File-based I/O: HDF5, Silo
• MPI
• WebSockets
• ZFP

Relay

Relay

22
LLNL-PRES-842096

The Conduit Relay library provides advanced I/O features built
on top of Conduit’s data model

Relay HDF5 I/O

§ Node round trip to/from HDF5 files

§ Underpins checkpoint restart I/O and
data extracts

§ Unbound and Handle based interfaces

§ Supports path-based partial I/O

Relay

// save a Node tree to hdf5
conduit::relay::io::save(mesh,"mydata.hdf5");

// load hdf5 data into a Node tree
conduit::Node mydata;
conduit::relay::io::load("mydata.hdf5”, mydata);

Relay HDF5 I/O Example

23
LLNL-PRES-842096

The Conduit Relay library provides advanced I/O features built
on top of Conduit’s data model

Relay MPI

§ Node based MPI functions
— send(), recv()

— isend(), irecv()
— gather(), all_gather()

— reduce(), all_reduce()

— broadcast()

§ Schema-aware and Data-only options

Relay

int tag = 0;
if(my_rank == 0)
{
// send a Node tree to rank 1
conduit::relay::mpi::send_using_schema(mesh, 1,

tag,
MPI_COMM_WORLD);

}
else if(my_rank == 1)
{
// receive a Node tree from rank 0
conduit::relay::mpi::recv_using_schema(mesh, 0,

tag,
MPI_COMM_WORLD);

}

Relay MPI send/recv Example

24
LLNL-PRES-842096

The Conduit Blueprint library provides tools to share common
flavors of data with Conduit

Supports shared higher-level
conventions for using Conduit
to represent data

• Computational Meshes
• Multi-component Arrays
• One-to-many Relations
• Example Meshes
• Mesh Transforms

Blueprint

Intro

25
LLNL-PRES-842096

§ A variety of simulation codes leverage their own bespoke in-memory mesh
data models.

§ Other tools leverage a range of mesh-focused toolkits, frameworks, and APIs
including: VTK, VTK-m, MFEM, and SAMRAI

§ A wide set of powerful analysis tools are mesh agnostic (NumPy, PyTorch,
etc) and recasting mesh data into these tools is a challenge

§ A single full-fledged API will never cover all use cases across the ecosystem

Components of the HPC simulation ecosystem implement and
leverage a wide range of mesh data structures and APIs

The Mesh Blueprint is a strategy to describe and adapt mesh data between APIs

Blueprint

26
LLNL-PRES-842096

We are using Mesh Blueprint to simplify interfaces and support
shared modular development

Pre-Conduit/Blueprint Infrastructure

Sim Code 1 Sim Code 2 Sim Code 3

Library Code A Library Code B Library Code C

Post-Conduit/Blueprint Infrastructure

Sim Code 1 Sim Code 2 Sim Code 3

Library Code A Library Code B Library Code C

Mesh Type α Mesh Type β Mesh Type γ

Blueprint

27
LLNL-PRES-842096

§ Blueprint interfaces connect simulation codes to a wide set of capabilities:
— More Physics Packages
— Visualization and Data Analysis
— Mesh Transformations
— I/O support

§ Multiple codes and tools leverage Blueprint transforms

§ Blueprint simplifies composing features across the ecosystem

Blueprint is a strategy to share our investments and lower
barriers to build and adopt new capabilities

Blueprint

Open-source and incremental adoption are also key aspects of this strategy

28
LLNL-PRES-842096

§ Methods which verify if data conforms to
blessed conventions at runtime
— Provides detailed information for non-conforming

data

§ Methods that transform conforming data,
including:
— Coordinate Set and Topology transforms

(e.g. Implicit Uniform to Explicit Coordinates)
— Memory layout transforms

(e.g. Contiguous to Interleaved to array layouts)

§ Methods that generate mesh examples, which
cover the menu of supported meshes

The Conduit Blueprint library facilitates using Mesh Blueprint
data via three important capabilities

Mesh Examples from
the Blueprint Library

Blueprint

29
LLNL-PRES-842096

Non-shocking Revelation:
Our prior example was a valid Blueprint Mesh
coordsets:
coords:
type: "explicit"
values:
x: [-1.0, 0.0, 0.0, 0.0, 1.0]
y: [0.0, -1.0, 0.0, 1.0, 0.0]
z: [0.0, 0.0, 1.0, 0.0, 0.0]

topologies:
topo:
type: "unstructured"
coordset: "coords"
elements:
shape: "tet"
connectivity: [0, 1, 3, 2, 4, 3, 1, 2]

fields:
density:
association: "element”
topology: ”topo"
values: [1.0, 2.0]

Example YAML Output An unstructured tet mesh

Blueprint

30
LLNL-PRES-842096

Conduit Blueprint provides a range of Mesh Representation
Transforms

Recent Features

Partitioning and Flattening were implemented via a LLNL + Intelligent Light Contract

Mesh Topology Transforms N-to-M Mesh Partitioning

New PartitionInput Mesh

Mesh Flattening

(…)

f0 f1 f2 f3

r0
r1
r2

rn-1

§ Transforms adapt mesh data for use across components of the ecosystem

31
LLNL-PRES-842096

Conduit evolved through collaboration and co-design of
simulation and visualization tools over many years

2011 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Conduit I/O!

17

010101
1011101
011010 SILO

Cold Storage!
•  Highly compressed!
•  Supports arbitrary

Nodes!

Object Mapping!
•  Structured!
•  Human readable!
•  Visualizer compatible!

(…)

f0 f1 f2 f3

r0
r1
r2

rn-1

Adoption in Production Applications
§ In-memory Datastore and HDF5 Check-

point Restart I/O for Simulations
§Ascent Project

§ In situ Mesh Overlay, Multi-material,
AMR, and Distributed Memory Mesh Info

§Broadening adoption

Prototyping
§2011 Initial Brainstorming

§2013 Creation at LLNL Hackathon
§2014 – 2015 Harvey Mudd Clinic

§2015 “Strawman”

Investing in Shared Transforms
§Partitioning, Load-balancing, and

Flattening
§Polytopal support, AMR to

Polytopal
§ Long-tail Blueprint support

Evolution

32
LLNL-PRES-842096

Conduit evolved through “Stone Soup” co-design

Evolution

33
LLNL-PRES-842096

Conduit evolved through “Stone Soup + Dogfooding” co-design

Evolution

34
LLNL-PRES-842096

§ Conduit focuses on in-memory description and other use cases are built on
that foundation

§ Conduit simplifies writing HPC simulation and data analysis software
— Streamlined I/O and MPI communication Relay APIs

§ Conduit Blueprint connects codes to a rich ecosystem of mesh aware tools
— Conduit Mesh Transforms
— Blueprint interfaces to Ascent, Catalyst, Sensei, and VisIt

§ Conduit Github: https://github.com/llnl/conduit

§ Cyrus Contact Email: cyrush@llnl.gov

We built Conduit to simplify data description and sharing
across software components

Conclusion

https://github.com/llnl/conduit
mailto:cyrush@llnl.gov

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S.
Department of Energy’s Office of Science and National Nuclear Security Administration, responsible for
delivering a capable exascale ecosystem, including software, applications, and hardware technology,
to support the nation’s exascale computing imperative.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC

36
LLNL-PRES-842096

Backup Slides

37
LLNL-PRES-842096

§ “Conduit: A Successful Strategy for Describing and Sharing Data In Situ”
SC22 ISAV22 Workshop, Nov 2022

§ “The Conduit Mesh Blueprint: Drafting a New Way to Share Simulation Meshes”
DOE Computer Graphics Forum Talk, April 2019

§ “The ALPINE In Situ Infrastructure: Ascending from the Ashes of Strawman”
In Proceedings of ISAV 2017 (SC17) Workshop, Denver CO, November 2017

§ SciPy 2016 talk on Conduit (https://youtu.be/3_GKjeRUPKg)

§ “Strawman: A Batch In Situ Visualization and Analysis Infrastructure for Multi-Physics
Simulation Codes”
In Proceedings of ISAV 2015 (SC15)Workshop, Austin TX, November 2015

References (Presentations and Related Papers)

https://sc22.supercomputing.org/presentation/?id=ws_isav111&sess=sess426
https://www.ascent-dav.org/2019_04_24_doecfg_conduit_blueprint.pdf
https://dl.acm.org/citation.cfm?doid=3144769.3144778
https://youtu.be/3_GKjeRUPKg
http://dl.acm.org/citation.cfm?id=2828625

38
LLNL-PRES-842096

§ Conduit User Tutorials (C++ & Python)
https://llnl-conduit.readthedocs.io/en/latest/conduit.html

§ Ascent Conduit Intro (C++ & Python)
https://ascent.readthedocs.io/en/latest/Tutorial_Intro_Conduit_Basics.html

References (Tutorials)

https://llnl-conduit.readthedocs.io/en/latest/conduit.html
https://ascent.readthedocs.io/en/latest/Tutorial_Intro_Conduit_Basics.html

39
LLNL-PRES-842096

Use Cases:

§ Transform a uniform mesh into an an unstructured
mesh, so you can run an algorithm written for only
unstructured meshes on this data

§ Transform a polyhedral mesh into an unstructured
tetrahedral mesh for visualization

§ Transform a block structured AMR mesh to a
polyhedral mesh, so it can be connected another
package that only runs on polyhedra.

Conduit Blueprint provides a range of Mesh Representation
Transforms

AMR to Polygonal Example

Recent Features

40
LLNL-PRES-842096

Conduit Blueprint provides general M-to-N mesh partitioning
and subset selection tools

New Partition SubsetInput Mesh

conduit::blueprint::mesh::partition() Examples

https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh_partition.html

Load Balancing Example

Input Mesh

Parmetis
Partitioned

Mesh

Recent Features

Partitioning was implemented in a LLNL + Intelligent Light Contract

Use Cases: Split Domains, Fuse Domains, Load Balancing, Selections

https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh_partition.html

41
LLNL-PRES-842096

(…)

f0 f1 f2 f3

r0
r1
r2

rn-1

Conduit Blueprint provides a tool to flatten mesh field values
into tables

Use Cases:

§ Transform Mesh field data data into tables of
per-element and per-vertex field values for
further analysis

§ Supports the common quandary:
“I have a mesh, but I need a giant table
with all my field values”

§ Save tables to CSV or HDF5 for mesh agnostic
tools (NumPy, PyTorch, etc) to digest

Flattening Example

Recent Features

Flattening was implemented in a LLNL + Intelligent Light Contract

