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§ Conduit (https://github.com/llnl/conduit) is an open source project from Lawrence Livermore National 
Laboratory that provides an intuitive model for describing hierarchical scientific data in C++, C, Fortran, and 
Python. It is used to share data in-memory, for serialization, and for I/O. 

§ Conduit was built around the concept that an in-memory data description capability simplifies common tasks 
in the HPC simulation eco-system and helps connect software components. Sharing simulation meshes across 
software components is one of the primary use cases for Conduit. To support this Conduit provides the Mesh 
Blueprint (https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html), a set of hierarchical 
conventions for describing mesh-based simulation data. 

§ This talk introduces Conduit, the Mesh Blueprint, and the motivation for these tools.

Abstract

https://github.com/llnl/conduit
https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html
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§ “The Conduit Mesh Blueprint: Drafting a New Way to Share Simulation Meshes”
DOE Computer Graphics Forum Talk, April 2019 

§ “The ALPINE In Situ Infrastructure: Ascending from the Ashes of Strawman”
In Proceedings of ISAV 2017 (SC17) Workshop, Denver CO, November 2017

§ SciPy 2016 talk on Conduit (https://youtu.be/3_GKjeRUPKg)

§ “Strawman: A Batch In Situ Visualization and Analysis Infrastructure for Multi-Physics 
Simulation Codes” 
In Proceedings of ISAV 2015 (SC15)Workshop, Austin TX, November 2015

References (Presentations and Related Papers) 

https://www.ascent-dav.org/2019_04_24_doecfg_conduit_blueprint.pdf
https://dl.acm.org/citation.cfm?doid=3144769.3144778
https://youtu.be/3_GKjeRUPKg
http://dl.acm.org/citation.cfm?id=2828625
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§ Conduit User Tutorials (C++ & Python)
https://llnl-conduit.readthedocs.io/en/latest/conduit.html

§ Ascent Conduit Intro (C++ & Python)
https://ascent.readthedocs.io/en/latest/Tutorial_Intro_Conduit_Basics.html

References (Tutorials)

https://llnl-conduit.readthedocs.io/en/latest/conduit.html
https://ascent.readthedocs.io/en/latest/Tutorial_Intro_Conduit_Basics.html
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§ Conduit provides a set of tools focused on in-memory data description to aid 
with sharing data across the HPC ecosystem

§ The Mesh Blueprint is a set of hierarchical conventions (built using Conduit) 
to describe mesh-based simulation data both in-memory and via files

This talk is about Conduit and the Mesh Blueprint



7
LLNL-PRES-824729

§ General use of Conduit may make life easier if you are writing HPC 
simulation or data analysis software

§ The Mesh Blueprint is being adopted as a data interface to DOE supported 
open source in situ visualization tools:
— Ascent (http://ascent-dav.org/)
— Catalyst (https://catalyst-in-situ.readthedocs.io)
— SENSEI (https://sensei-insitu.org/)

Why should you be interested in these topics?

http://ascent-dav.org/
https://catalyst-in-situ.readthedocs.io/
https://sensei-insitu.org/
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Introduction to Conduit
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§ Provides an intuitive API for in-memory data description
— Enables human-friendly hierarchical data organization

— Can describe in-memory arrays without copying

— Provides C++, C, Python, and Fortran APIs

§ Provides common conventions for exchanging complex data
— Shared conventions for passing complex data (e.g. Simulation Meshes) enable 

modular interfaces across software libraries and simulation applications

§ Provides easy to use I/O interfaces for moving and storing 
data
— Enables use cases like binary checkpoint restart

— Supports moving complex data with MPI (serialization)

Conduit provides intuitive APIs for in-memory data description 
and exchange

http://software.llnl.gov/conduit
http://github.com/llnl/conduit

Website and GitHub Repo

Hierarchical in-memory data description

Conventions for sharing in-memory mesh data

http://software.llnl.gov/conduit
http://github.com/llnl/conduit
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§ Let’s look at some examples of how to create a Node

§ https://ascent.readthedocs.io/en/latest/Tutorial_Intro_Conduit_Basics.html

§ (Demo of Ascent Tutorial Conduit Basics Jupyter Notebook)

The heart of Conduit is a hierarchical variant type: Node

https://ascent.readthedocs.io/en/latest/Tutorial_Intro_Conduit_Basics.html
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Conduit API Example:
Create a tree of data arrays

coordsets:
coords:

values:
x: [0.0, 1.0, 2.0]
y: [0.0, 1.0, 2.0]

fields:
density:

values: [1.0, 1.0, 1.0, 1.0]

1

# include <conduit.hpp>
# include <conduit_blueprint.hpp>
# include <conduit_relay.hpp>

// create a "Node", the primary object in conduit
conduit::Node n;
// init our Node hierarchy with a few data arrays
n["coordsets/coords/values/x"] = {0.0,1.0,2.0};
n["coordsets/coords/values/y"] = {0.0,1.0,2.0};
n["fields/density/values"] = {1.0,1.0,1.0,1.0};
n.print();

1

Foreshadowing:
These don’t have to be
Contiguously allocated arrays 
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Conduit API Example:
Mixing externally allocated and Conduit owned data

// you can mix external and conduit owned data within a
// Node hierarchy
std::vector<conduit::float64> vel_u(9,1.0);
std::vector<conduit::float64> vel_v(9,1.0);

// use Node::external to init the "u" and "v" nodes of the
// tree to point to the same memory location of the source vectors.
n["fields/velocity/values/u"].set_external(vel_u);
n["fields/velocity/values/v"].set_external(vel_v);

// show the elements of the "u" array
n["fields/velocity/values/u"].print();

// change the first element of the u array (via the vector)

vel_u[0] = 3.14159;

// show the elements of the "u" array again
n["fields/velocity/values"].print();

// mixed ownership semantics allow you to organize,
// extend, and annotate existing data
n["coordsets/coords/type"] = "rectilinear";
n["fields/density/units"] = "g/cc";
n["fields/velocity/units"] = "m/s";

n.print();

1
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Conduit API Example:
Mixing externally allocated and Conduit owned data

// you can mix external and conduit owned data within a
// Node hierarchy
std::vector<conduit::float64> vel_u(9,1.0);
std::vector<conduit::float64> vel_v(9,1.0);

// use Node::external to init the "u" and "v" nodes of the
// tree to point to the same memory location of the source vectors.
n["fields/velocity/values/u"].set_external(vel_u);
n["fields/velocity/values/v"].set_external(vel_v);

// show the elements of the "u" array
n["fields/velocity/values/u"].print();

// change the first element of the u array (via the vector)

vel_u[0] = 3.14159;

// show the elements of the "u" array again
n["fields/velocity/values"].print();

// mixed ownership semantics allow you to organize,
// extend, and annotate existing data
n["coordsets/coords/type"] = "rectilinear";
n["fields/density/units"] = "g/cc";
n["fields/velocity/units"] = "m/s";

n.print();

1

// you can mix external and conduit owned data within a
// Node hierarchy
std::vector<conduit::float64> vel_u(9,1.0);
std::vector<conduit::float64> vel_v(9,1.0);

// use Node::external to init the "u" and "v" nodes of the
// tree to point to the same memory location of the source vectors.
n["fields/velocity/values/u"].set_external(vel_u);
n["fields/velocity/values/v"].set_external(vel_v);

// show the elements of the "u" array
n["fields/velocity/values/u"].print();

// change the first element of the u array (via the vector)

vel_u[0] = 3.14159;

// show the elements of the "u" array again
n["fields/velocity/values"].print();

// mixed ownership semantics allow you to organize,
// extend, and annotate existing data
n["coordsets/coords/type"] = "rectilinear";
n["fields/density/units"] = "g/cc";
n["fields/velocity/units"] = "m/s";

n.print();

1

[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

u: [3.14159, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
v: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

coordsets:
coords:

values:
x: [0.0, 1.0, 2.0]
y: [0.0, 1.0, 2.0]

type: "rectilinear"
fields:

density:
values: [1.0, 1.0, 1.0, 1.0]
units: "g/cc"

velocity:
values:

u: [3.14159, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
v: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

units: "m/s"

1

[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

u: [3.14159, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
v: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

coordsets:
coords:
values:
x: [0.0, 1.0, 2.0]
y: [0.0, 1.0, 2.0]

type: "rectilinear"
fields:
density:
values: [1.0, 1.0, 1.0, 1.0]
units: "g/cc"

velocity:
values:
u: [3.14159, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
v: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

units: "m/s"

1
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Conduit API Example:
Mixing externally allocated and Conduit owned data

// you can mix external and conduit owned data within a
// Node hierarchy
std::vector<conduit::float64> vel_u(9,1.0);
std::vector<conduit::float64> vel_v(9,1.0);

// use Node::external to init the "u" and "v" nodes of the
// tree to point to the same memory location of the source vectors.
n["fields/velocity/values/u"].set_external(vel_u);
n["fields/velocity/values/v"].set_external(vel_v);

// show the elements of the "u" array
n["fields/velocity/values/u"].print();

// change the first element of the u array (via the vector)

vel_u[0] = 3.14159;

// show the elements of the "u" array again
n["fields/velocity/values"].print();

// mixed ownership semantics allow you to organize,
// extend, and annotate existing data
n["coordsets/coords/type"] = "rectilinear";
n["fields/density/units"] = "g/cc";
n["fields/velocity/units"] = "m/s";

n.print();

1

[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

u: [3.14159, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
v: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

coordsets:
coords:

values:
x: [0.0, 1.0, 2.0]
y: [0.0, 1.0, 2.0]

type: "rectilinear"
fields:

density:
values: [1.0, 1.0, 1.0, 1.0]
units: "g/cc"

velocity:
values:

u: [3.14159, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
v: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

units: "m/s"

1
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We aim to provide intuitive C++, Python, and Fortran APIs

C++ Python Fortran

std::vector<float64> den(4,1.0);

conduit::Node n;
n["fields/density/values"] = den;
n["fields/density/units"] = "g/cc";

Node &n_den = n["fields/density"];

float64 *den_ptr = n_den["values"].value();
std::string den_units = n_den["units"].as_string();

n_den.print();

std::cout << "\nDensity (" << den_units << "):\n";
for(index_t i=0; i < 4; i++)
{

std::cout << den_ptr[i] << " ";
}

std::cout << std::endl;

1

import conduit
import numpy as np

den = np.ones(4,dtype="float64")

n = conduit.Node()
n["fields/density/values"] = den
n["fields/density/units"] = "g/cc"

n_density = n.fetch("fields/density")

den_vals = n_density["values"]
den_units = n_density["units"]

print(n_density)

print("\nDensity ({0}):\n{1})".format(den_units,
den_vals))

1

type(node) n, n_den, n_den_units
real(kind=8), dimension(4) :: den
real(kind=8), pointer :: d_arr(:)
character, pointer :: units(:)
integer i
integer units_len

do i = 1,4
den(i) = 1.0

enddo

n = conduit_node_obj_create()
call n%set_path_ptr("fields/density/values", den, 4_8)
call n%set_path("fields/density/units", "g/cc")

n_den = n%fetch("fields/density")

call n_den%fetch_path_as_float64_ptr("values", d_arr)

n_den_units = n_den%fetch("units")
units_len = n_den_units%number_of_elements()

call n_den_units%as_char8_str(units)

call n_den%print()

print *,"Density (", (units(i),i=1,units_len), "):"

do i = 1,4
write (*,"(f5.2,1x)",advance="no") d_arr(i)

enddo
print *

call conduit_node_obj_destroy(n)

1
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We aim to provide intuitive C++, Python, and Fortran APIs

C++ Python Fortran

values: [1.0, 1.0, 1.0, 1.0]
units: "g/cc"

Density (g/cc):
1 1 1 1

1

values: [1.0, 1.0, 1.0, 1.0]
units: "g/cc"

Density (g/cc):
[1. 1. 1. 1.])

1

values: [1.0, 1.0, 1.0, 1.0]
units: "g/cc"

Density (g/cc):
1.00 1.00 1.00 1.00

1
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A Node acts as one of following basic roles:
§ Object: An ordered associative array mapping names to children

§ List: An ordered list of unnamed children

§ Leaf: Scalar or 1D Array of bitwidth-specified primitives:
— Signed Integers: int8, int16, int32, int64
— Unsigned Integers: uint8, uint16, uint32, uint64
— Floating Point Numbers: float32, float64

— Strings: char8_str

§ Empty: No data

The heart of Conduit is a hierarchical variant type: Node

Experience with NumPy and JSON motivated Conduit’s data model
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Beyond setup and access methods, Node also provides methods 
to help you easily process and compare trees

§ Inspect the Memory layout of
— Leaves
— Entire Trees

§ Print Tree Summaries

§ Calculate Leaf Summary Metrics

§ Compact / Serialize Trees

§ Iterate over Children

§ Calculate Tree Differences 
(`diff` with adjustable tolerance)

§ Parse and Create
— YAML
— JSON
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Implements interfaces to 
Conduit’s in-memory data 
model

• Core Objects
• YAML/JSON parsing
• Basic I/O
• Basic transforms

Provides advanced I/O 
features built on top of 
Conduit’s data model

• File-based I/O: HDF5, Silo
• MPI
• WebSockets
• ZFP

Supports shared higher level
conventions for using Conduit 
to represent data

• Computational Meshes
• Multi-component Arrays
• One-to-many Relations
• Example Meshes
• Mesh Transforms

Conduit Relay Blueprint

Conduit’s Relay and Blueprint libraries provide features built on 
top of Conduit’s core data model
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Projects are now leveraging Conduit to support a wide range of 
capabilities

§ Creating in-memory data stores

§ Checkpoint restart of simulation 
data

§ Node/YAML/JSON based:
— Data APIs
— User APIs

§ Tree + Path-based I/O 
and partial I/O

§ Moving complex data with MPI

§ Distributing work with MPI

§ Sharing ad-hoc data between 
programs written in multiple 
languages
(both in-memory and via files)

§ Sharing simulation mesh data
(both in-memory and via files)
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What motivated Conduit?
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At LLNL, Weapon Simulation and Computing (WSC) develops an ecosystem of 
applications that provide validated physics modeling capabilities and fields the world-
class HPC platforms needed to fully utilize these applications.

Predictive simulation requires advanced modeling tools and 
access to parallel computational horsepower

Multi-physics Application Ecosystem Advanced HPC Platforms
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Snapshot of Scale and Complexity of LLNL’s WSC CP Program:
§Development Efforts

—~120 Developers
(Physicists, Engineers, Computer Scientists, Software Quality, etc …)
—~15 project teams
—~15 – 30+ year application lifetimes 
—~12 million lines of production code across projects
(with more than 100 third-party dependencies)

§Diversity of Programming Languages and HPC Architectures
—C++/C, Fortran, Python, Lua
—Distributed Memory plus Multi-core or Many-core

§Diversity of Data
—Scalars, Arrays, Tables, Contours, CAD Geometry, Meshes

LLNL’s WSC Computational Physics (CP) program develops 
production HPC multi-physics simulation applications

CP’s efforts are a microcosm of the broader HPC simulation community

Multi-physics Application Ecosystem
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The software ecosystem supporting HPC multi-physics 
simulations is very complex

Multi-physics Simulation Applications

CS Infrastructure
• Input Parsing
• Steering 
• Communication 
• Parallelism Abstractions
• I/O
• In Situ Coupling

Physics Libraries
• Material Properties
• Material Models

Numerical Libraries 
• Linear Algebra
• Finite Elements

Physics Packages
• Hydrodynamics
• Chemistry
• Thermal radiation
• {and many more …}

Visualization and 
Analysis
• Mesh Rendering
• Feature Extraction
• Simulated Diagnostics

Problem Setup and Meshing
• Computational Geometry
• Mesh Generation
• Mesh Decomposition 
• Mesh Overlay

Uncertainty 
Quantification 
• Ensemble Generation
• Parametric Studies
• Statistical Models

Workflow Applications
Simulation & Data 
Management
• Workflow Capture
• Data Organization
• Provenance
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Simulation & Data 
Management

Uncertainty Quantification Visualization and AnalysisProblem Setup

Workflow Applications

Multi-physics Simulation Applications

CS Infrastructure Physics Libraries

Numerical Libraries 

Physics Packages

A mix of C++, Python, Fortran and Lua are used to develop 
applications

C++ Python

C++ Fortran

C++ Fortran

C++
Lua

Python
Fortran

Fortran
C++ Python

Lua

PythonC++ Python Python
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Simulation & Data 
Management

Uncertainty Quantification Visualization and AnalysisProblem Setup

Workflow Applications

Multi-physics Simulation Applications

A mix of custom input languages, UIs, Python and Lua are used 
to run and script applications

Custom Input Language

Python

PythonUIs Python UIs PythonUIs
Python

YAML

Lua YAML
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We are several years into a strategic focus to develop a modular 
software foundation for our ecosystem

RAJA Performance Portability Layer (C++)

MFEM Modular parallel library for finite element methods

AXOM Core software components for HPC simulations

Ascent Flyweight in situ viz and analysis for HPC simulations

Spack A flexible package manager for HPC

Conduit Simplified Data Exchange for HPC Simulations

Many of our investments are open source: https://software.llnl.gov

https://software.llnl.gov/


28
LLNL-PRES-824729

How do we share data across these components?

§ Traditional Support:
— Simulations leverage their own bespoke in-memory mesh data models
— File-based I/O libraries evolved into defacto interfaces
— File-based I/O is acceptable for coarse-grain and low-frequency data sharing

§ Future Goals:
— Simplify connecting more components
— Broadly support in-memory sharing

Sharing data effectively is a key challenge to build our modular 
ecosystem

We need a flexible in-memory sharing solution to meet our goals
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§ Describe numeric primitives
— Scalars, strided arrays, etc with explicit precision

§ Support mixed memory ownership semantics
— Enable zero-copy where feasible
— Play friendly with existing data structures in multiple languages 

§ Enable higher level conventions
— Hierarchical context  (“key/value” + “paths” are a great interface …) 
— Human readable descriptions

We identified three key requirements to simplify in-memory 
data description

These requirements inspired Conduit
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§ Embodies our vision of data description as a core capability
— Provide an in-memory foundation on which to build serialization, I/O, and 

messaging features 

§ Completely runtime focused
— Avoids incompatible (or unshareable) code-generation solutions

§ Provides a multi-language data model
— APIs for C++, Python, C, and Fortran
— YAML/JSON friendly

We designed Conduit with software ecosystem logistics in mind

Philosophy: Share data without massive code infrastructure
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The Mesh Blueprint
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§ The Mesh Blueprint is being adopted as a data interface to DOE supported 
open source in situ visualization tools:
— Ascent (http://ascent-dav.org/)
— Catalyst (https://catalyst-in-situ.readthedocs.io)
— SENSEI (https://sensei-insitu.org/)

§ VisIt has a database reader for Blueprint-flavored HDF5/JSON/YAML fields

§ MFEM supports converting their mesh data structures to/from Blueprint trees

§ AMReX supports converting their mesh data structures to/from Blueprint trees

Many tools are adopting the Mesh Blueprint as an interface 

http://ascent-dav.org/
https://catalyst-in-situ.readthedocs.io/
https://sensei-insitu.org/
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The software ecosystem supporting HPC multi-physics 
simulations is very complex

Multi-physics Simulation Applications

CS Infrastructure
• Input Parsing
• Steering 
• Communication 
• Parallelism Abstractions
• I/O
• In Situ Coupling

Physics Libraries
• Material Properties
• Material Models

Numerical Libraries 
• Linear Algebra
• Finite Elements

Physics Packages
• Hydrodynamics
• Chemistry
• Thermal radiation
• {and many more …}

Visualization and 
Analysis
• Mesh Rendering
• Feature Extraction
• Simulated Diagnostics

Problem Setup and Meshing
• Computational Geometry
• Mesh Generation
• Mesh Decomposition 
• Mesh Overlay

Uncertainty 
Quantification 
• Ensemble Generation
• Parametric Studies
• Statistical Models

Workflow Applications
Simulation & Data 
Management
• Workflow Capture
• Data Organization
• Provenance
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The software ecosystem supporting HPC multi-physics 
simulations is very complex

Multi-physics Simulation Applications

CS Infrastructure
• Input Parsing
• Steering 
• Communication 
• Parallelism Abstractions
• I/O
• In Situ Coupling

Physics Libraries
• Material Properties
• Material Models

Numerical Libraries 
• Linear Algebra
• Finite Elements

Physics Packages
• Hydrodynamics
• Chemistry
• Thermal radiation
• {and many more …}

Visualization and 
Analysis
• Mesh Rendering
• Feature Extraction
• Simulated Diagnostics

Problem Setup and Meshing
• Computational Geometry
• Mesh Generation
• Mesh Decomposition 
• Mesh Overlay

Uncertainty 
Quantification 
• Ensemble Generation
• Parametric Studies
• Statistical Models

Workflow Applications
Simulation & Data 
Management
• Workflow Capture
• Data Organization
• Provenance

“Sharing” mesh data requires agreement 
on how to represent meshes ...
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§ Many simulation applications leverage their own bespoke in-memory mesh 
data models. 

§ Other tools leverage a range of mesh-focused toolkits, frameworks, and APIs 
including: VTK, VTK-m, MFEM, and SAMRAI

§ Many powerful analysis tools are mesh agnostic (NumPy, PyTorch, etc) and 
recasting bespoke mesh data into these tools is a barrier to wide use

Components of the ecosystem implement and leverage a wide 
range of mesh data structures and APIs

We never expect a single full fledged API to emerge that 
will cover all use cases across the ecosystem
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The Mesh Blueprint aims to provide an abstract, multi-hub 
interface to simplify interoperability

Sim Code 1

Pre-Conduit/Blueprint Infrastructure

Sim Code 2 Sim Code 3

Library Code A Library Code B Library Code C

Post-Conduit/Blueprint Infrastructure

Sim Code 1 Sim Code 2 Sim Code 3

Library Code A Library Code B Library Code C

Mesh Type α Mesh Type β Mesh Type γ
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Visualization Tool

Data description simplifies connecting software components
Example: Sharing a Vector Field

Simulation
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Data description simplifies connecting software components
Example: Sharing a Vector Field

Simulation

Simulation Data 
Structures for 
a Vector Field

Visualization Tool

Visualization Library 
Data Structures for 

a Vector Field

mcarray
(Multi-component Array)
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Simulation

Data description simplifies connecting software components
Example: Sharing a Vector Field

mcarray
(Multi-component Array)

Vector Field {u,v}
(Many possibilities!)

Contiguous: u u v v

Interleaved:

Separate:

Arbitrary:

u v u v

u u
v v

u u
v v

Visualization Tool

Visualization Library 
Data Structures for 

a Vector Field
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Simulation

Data description simplifies connecting software components
Example: Sharing a Vector Field

mcarray
(Multi-component Array)

Vector Field {u,v}
(Many possibilities!)

Contiguous: u u v v

Interleaved:

Separate:

Arbitrary:

u v u v

u u
v v

u u
v v

Visualization Tool
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Simulation

Data description simplifies connecting software components
Example: Sharing a Vector Field

mcarray
(Multi-component Array)

Vector Field {u,v}
(Many possibilities!)

Contiguous: u u v v

Interleaved:

Separate:

Arbitrary:

u v u v

u u
v v

u u
v v

Visualization Tool

vtkDataArray Classes
(Also many possibilities!)
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Data description simplifies connecting software components
Example: Sharing a Vector Field

Simulation Visualization Tool

mcarray
(Multi-component Array)

Describe as is

Cases your API supports:
Zero copy and/or adapt

Arbitrary / Too complex:
Transform to simpler 
representation

Use Memory Inspection
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Takeaway: Conduit makes you feel safe

Simulation and Tool
Data Structures in the Wild

View through
Conduit Lens
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Conduit provides an in-situ data layer to minimize unnecessary data copying/movement 
and Blueprint provides a standard schema for communicating mesh data

The Mesh Blueprint is a set of conventions that outline a 
hierarchical structure (or schema) to describe mesh data

JSON Representation Visualization 

Mesh Blueprint Example: A Simple  Rectilinear Grid
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The Mesh Blueprint supports mesh constructs common in 
several full featured mesh data models

Ideas were shaped by surveying projects including: ADIOS, BoxLib, Chombo, Damaris, 
EAVL, Exodus, ITAPS, MFEM, SAF, SAMRAI, Silo, VisIt’s AVT, VTK, VTK-m, Xdmf.

Mesh

Coordinate Sets
Sets of points in space

Fields
Data values associated with 

elements in a topology

Topologies
Collections of mesh elements 
defined on a coordinate set
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We are steadily filling out the Blueprint to cover the wide range 
of mesh descriptions required by the ecosystem

https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html

Topologies: 1D/2D/3D - Uniform, Rectilinear, Structured, Unstructured, Polygonal, Polyhedral, AMR

Fields: Scalar, Vector, Multi-material

https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html
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We are steadily filling out the Blueprint to cover the wide range 
of mesh descriptions required by the ecosystem
§ Coordinate Sets

— 1D/2D/3D
— Cartesian, Cylindrical, Spherical
— Implicit: Uniform, Rectilinear
— Explicit

§ Topologies
— Implicit: Points, Uniform, Rectilinear, 

Structured
— Unstructured

[Points, Lines, Quads, Tris, Tets, Hexs]
— Optional MFEM Grid Function support
— Arbitrary Polygonal and Polyhedral
— Unstructured heterogenous element shapes

(Planned for future)

§ Fields
— Vertex or Element associated
— Multi-component field arrays
— Optional MFEM Grid Function Basis support
— Sparse representations for multi-material field 

arrays
— Multi-dimensional field arrays 

(Planned for future)

§ Domain Decomposition Info
— Basic State Info [Domain Ids]
— Domain Adjacency Info for Unstructured Meshes
— Domain Adjacency Info for Structured Meshes
— Nesting Info for Block-Structured AMR Meshes
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The Mesh Blueprint supports many different styles of mesh 
metadata and supplies transform functions therebetween

Fields/Materials

Element Dominant:

Material Dominant:

Everything In Between

Bit Width:

Data Ordering:

Data Indirection:

A VFs a
1

a
2 0 0

B VFs 0 b
1

b
2 0

C VFs 0 0 c
1

c
2

A VFs a
1

a
2

B VFs b
1

b
2

C VFs c
1

c
2

A EIDs 0 1

B EIDS 1 2

C EIDS 2 3

Topologies

Structured (Rectilinear):

Unstructured:

X Coords 0 1

Y Coords 0 1

Topology (implicit)

X Coords

Y Coords

Topology

0 1 0 1

0 0 1 1

0 1 3 2

x
1 … x

N
y
1 … y

N

x
1

y
1 … … x

N
y
N

Contig.

Interl.

0xDEADBEE
F

0x0000000
0

int

long
0xDEADBEE
F

sparse v
N … v

1 …

indices i1 i2 ... ...

compact v
1

v
2 … …

v
2 …

… i
N

… v
N
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The structure of the Blueprint is designed with 
distributed-memory parallelism in mind

Domain DecompositionFull Dataset

Any info required to describe to domain decomposition, nesting, or abutment is local
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§ Methods which verify if data conforms to 
blessed conventions at runtime
— Provides detailed information for non-conforming 

data

§ Methods that apply basic data transforms to 
conforming data, including:
— Coordinate Set and Topology transforms

(e.g. Implicit Uniform to Explicit Coordinates) 
— Memory layout transforms

(e.g. Contiguous to Interleaved to array layouts)

§ Methods that generate mesh examples, aiming 
to cover the range of supported meshes

The Conduit Blueprint library facilitates using Mesh Blueprint 
data via three important capabilities  

Mesh Blueprint Examples generated 
by the Conduit Blueprint Library 
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§ Let’s look at some examples of how to create and verify Blueprint Meshes

§ https://ascent.readthedocs.io/en/latest/Tutorial_Intro_Conduit_Blueprint.html

§ (Demo of Ascent Tutorial Conduit Blueprint Jupyter Notebook)

Demo: Creating Simple Blueprint Meshes

https://ascent.readthedocs.io/en/latest/Tutorial_Intro_Conduit_Blueprint.html
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Conduit API Example:
Our first example was almost a Blueprint Mesh … 

// extend our example to a blueprint compliant mesh
n["topologies/topo/type"] = "rectilinear";
n["topologies/topo/coordset"] = "coords";

n["fields/density/association"] = "element";
n["fields/density/topology"] = "topo";

n["fields/velocity/association"] = "vertex";
n["fields/velocity/topology"] = "topo";

n.print();

conduit::Node info;
if(conduit::blueprint::mesh::verify(n,info))
{

std::cout << "Mesh Blueprint Verify Success!" << std::endl;
}
else
{

std::cout << "Mesh Blueprint Verify Failure!" << std::endl;
info.print();

}

conduit::relay::io::blueprint::save_mesh(n,"my_mesh_yaml","yaml");

1

coordsets:
coords:
values:
x: [0.0, 1.0, 2.0]
y: [0.0, 1.0, 2.0]

type: "rectilinear"
fields:
density:
values: [1.0, 1.0, 1.0, 1.0]
units: "g/cc"
association: "element"
topology: "topo"

velocity:
values:
u: [3.14159, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
v: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

units: "m/s"
association: "vertex"
topology: "topo"

topologies:
topo:
type: "rectilinear"
coordset: "coords"

Mesh Blueprint Verify Success!

1
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§ Conduit focuses on in-memory description and other use cases are built on 
that foundation

§ Conduit and the Mesh Blueprint support LLNL WSC’s strategic push to 
develop a modular simulation software ecosystem

§ The Mesh Blueprint is being adopted as a data interface to DOE supported 
open source visualization tools

§ Conduit Github: https://github.com/llnl/conduit

§ Cyrus Contact Email: cyrush@llnl.gov

Conclusion: We built Conduit to simplify data description 
and sharing across software components

https://github.com/llnl/conduit
mailto:cyrush@llnl.gov
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Backup slides
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LLNL programs actively develop and leverage open source
software

https://software.llnl.gov

§ DOE ASC(I) and ASCR have 
explicitly embraced and 
promoted open source software 
development since 2002

§ Not all our software projects can 
be open sourced, but open 
source is a key part of our 
development strategy

§ Open source and open 
development amplify:
Collaboration, Adoption, and 
Competition

https://software.llnl.gov/
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Creating the Mesh Blueprint followed the flavor of a Stone Soup 
Model
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§ Summer 2015: The VisIt team expanded these ideas to create a mesh 
interface for a new in-situ visualization proxy called “Strawman”

The Blueprint started with experiments using Conduit to 
describe meshes for visualization

“Strawman: A Batch In Situ Visualization and Analysis Infrastructure for Multi-Physics Simulation Codes”
In Proceedings of ISAV 2015 (SC15)Workshop, Austin TX, November 2015

	
			

Strawman 

	
	

Simulation 

Conduit	
In-Core	Data	Descrip0on	

In Situ Pipelines 

EAVL,	VTK-m		
Data	Model	+	Rendering	

Mesh	Data	 Actions 

IceT	
Parallel	Compositing	

Streaming	
Web	Client	Image	Files	Image	Files	Image	Files	

Rendered	Images	

	
	

Publish Execute 

“Strawman” Software Architecture In-situ render of Cloverleaf3D data Inspiration for Viz Proxy App
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§ Fall 2015 – Fall 2016: The Axom and MARBL teams adopted and helped 
expand Blueprint to describe meshes for checkpoint restarts supporting 
both of MARBL’s hydrodynamics packages (Supported an ATDM FY16 L2)

Success with visualization use cases helped demonstrate that 
the Blueprint was viable for use directly in simulations

HDF5 Checkpoint Restart  Files

Blueprint
(“Mesh-aware” data description)

Sidre: In-memory Datastore 
(Centralized data shared by applications, 

Axom components, tools, etc.)

Axom
High-order Finite 

Element ALE Hydro
High-order Finite 
Difference Hydro
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§ Fall 2016 – Fall 2017: A Blueprint interface for the Carter mesh overlay 
tool was developed, which enabled in-situ mesh overlay from MARBL’s 
high-order ALE hydrodynamics package to MARBL’s high-order finite 
difference hydrodynamics package (Supported an ATDM FY17 L2)

Success with visualization use cases helped demonstrate that 
the Blueprint was viable for use directly in simulations

Axom Sidre: In-memory Datastore High-order Finite 
Element ALE Hydro

High-order Finite 
Difference Hydro

Mesh Overlay

(Carter)

Blueprint Blueprint

Low-Order Refine

MFEM refine Conduit-Carter
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§ Fall 2017 – Present: Blueprint is the mesh interface for Ascent, an in-
situ visualization and analysis infrastructure developed as part of the 
ALPINE ECP project

Adoption of the Blueprint in MARBL bolstered the case for using 
Blueprint in the ALPINE ECP project

“The ALPINE In Situ Infrastructure: Ascending from the Ashes of Strawman”
In Proceedings of ISAV 2017 (SC17) Workshop, Denver CO, November 2017

https://github.com/alpine-dav/ascent
https://ascent.readthedocs.io/

ALPINE Ascent

Simulation

Declare
• Scenes
• Pipelines
• Extracts

Image	
Files

Image	
Files

Pictures
Data

Scenes
(Render Pictures)

Extracts
(Capture Data)

Pipelines
(Transform Data)

Actions

Publish

Mesh	Data

Ascent Software Architecture In-situ render from MARBL Evolved from “Strawman”

https://ascent.readthedocs.io/
https://ascent.readthedocs.io/

