
LLNL-PRES-824729
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Conduit
Simplified Data Exchange for HPC Simulations
https://github.com/llnl/conduit

LANL Data Science at Scale Summer School
Cyrus Harrison (cyrush@llnl.gov)
Joe Ciurej
Matt Larsen
(and other Conduit contributors)Wednesday July 21st, 2021

https://github.com/llnl/conduit

2
LLNL-PRES-824729

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and
hardware technology, to support the nation’s exascale computing imperative.

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

3
LLNL-PRES-824729

§ Conduit (https://github.com/llnl/conduit) is an open source project from Lawrence Livermore National
Laboratory that provides an intuitive model for describing hierarchical scientific data in C++, C, Fortran, and
Python. It is used to share data in-memory, for serialization, and for I/O.

§ Conduit was built around the concept that an in-memory data description capability simplifies common tasks
in the HPC simulation eco-system and helps connect software components. Sharing simulation meshes across
software components is one of the primary use cases for Conduit. To support this Conduit provides the Mesh
Blueprint (https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html), a set of hierarchical
conventions for describing mesh-based simulation data.

§ This talk introduces Conduit, the Mesh Blueprint, and the motivation for these tools.

Abstract

https://github.com/llnl/conduit
https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html

4
LLNL-PRES-824729

§ “The Conduit Mesh Blueprint: Drafting a New Way to Share Simulation Meshes”
DOE Computer Graphics Forum Talk, April 2019

§ “The ALPINE In Situ Infrastructure: Ascending from the Ashes of Strawman”
In Proceedings of ISAV 2017 (SC17) Workshop, Denver CO, November 2017

§ SciPy 2016 talk on Conduit (https://youtu.be/3_GKjeRUPKg)

§ “Strawman: A Batch In Situ Visualization and Analysis Infrastructure for Multi-Physics
Simulation Codes”
In Proceedings of ISAV 2015 (SC15)Workshop, Austin TX, November 2015

References (Presentations and Related Papers)

https://www.ascent-dav.org/2019_04_24_doecfg_conduit_blueprint.pdf
https://dl.acm.org/citation.cfm?doid=3144769.3144778
https://youtu.be/3_GKjeRUPKg
http://dl.acm.org/citation.cfm?id=2828625

5
LLNL-PRES-824729

§ Conduit User Tutorials (C++ & Python)
https://llnl-conduit.readthedocs.io/en/latest/conduit.html

§ Ascent Conduit Intro (C++ & Python)
https://ascent.readthedocs.io/en/latest/Tutorial_Intro_Conduit_Basics.html

References (Tutorials)

https://llnl-conduit.readthedocs.io/en/latest/conduit.html
https://ascent.readthedocs.io/en/latest/Tutorial_Intro_Conduit_Basics.html

6
LLNL-PRES-824729

§ Conduit provides a set of tools focused on in-memory data description to aid
with sharing data across the HPC ecosystem

§ The Mesh Blueprint is a set of hierarchical conventions (built using Conduit)
to describe mesh-based simulation data both in-memory and via files

This talk is about Conduit and the Mesh Blueprint

7
LLNL-PRES-824729

§ General use of Conduit may make life easier if you are writing HPC
simulation or data analysis software

§ The Mesh Blueprint is being adopted as a data interface to DOE supported
open source in situ visualization tools:
— Ascent (http://ascent-dav.org/)
— Catalyst (https://catalyst-in-situ.readthedocs.io)
— SENSEI (https://sensei-insitu.org/)

Why should you be interested in these topics?

http://ascent-dav.org/
https://catalyst-in-situ.readthedocs.io/
https://sensei-insitu.org/

8
LLNL-PRES-824729

Introduction to Conduit

9
LLNL-PRES-824729

§ Provides an intuitive API for in-memory data description
— Enables human-friendly hierarchical data organization

— Can describe in-memory arrays without copying

— Provides C++, C, Python, and Fortran APIs

§ Provides common conventions for exchanging complex data
— Shared conventions for passing complex data (e.g. Simulation Meshes) enable

modular interfaces across software libraries and simulation applications

§ Provides easy to use I/O interfaces for moving and storing
data
— Enables use cases like binary checkpoint restart

— Supports moving complex data with MPI (serialization)

Conduit provides intuitive APIs for in-memory data description
and exchange

http://software.llnl.gov/conduit
http://github.com/llnl/conduit

Website and GitHub Repo

Hierarchical in-memory data description

Conventions for sharing in-memory mesh data

http://software.llnl.gov/conduit
http://github.com/llnl/conduit

10
LLNL-PRES-824729

§ Let’s look at some examples of how to create a Node

§ https://ascent.readthedocs.io/en/latest/Tutorial_Intro_Conduit_Basics.html

§ (Demo of Ascent Tutorial Conduit Basics Jupyter Notebook)

The heart of Conduit is a hierarchical variant type: Node

https://ascent.readthedocs.io/en/latest/Tutorial_Intro_Conduit_Basics.html

11
LLNL-PRES-824729

Conduit API Example:
Create a tree of data arrays

coordsets:
coords:

values:
x: [0.0, 1.0, 2.0]
y: [0.0, 1.0, 2.0]

fields:
density:

values: [1.0, 1.0, 1.0, 1.0]

1

include <conduit.hpp>
include <conduit_blueprint.hpp>
include <conduit_relay.hpp>

// create a "Node", the primary object in conduit
conduit::Node n;
// init our Node hierarchy with a few data arrays
n["coordsets/coords/values/x"] = {0.0,1.0,2.0};
n["coordsets/coords/values/y"] = {0.0,1.0,2.0};
n["fields/density/values"] = {1.0,1.0,1.0,1.0};
n.print();

1

Foreshadowing:
These don’t have to be
Contiguously allocated arrays

12
LLNL-PRES-824729

Conduit API Example:
Mixing externally allocated and Conduit owned data

// you can mix external and conduit owned data within a
// Node hierarchy
std::vector<conduit::float64> vel_u(9,1.0);
std::vector<conduit::float64> vel_v(9,1.0);

// use Node::external to init the "u" and "v" nodes of the
// tree to point to the same memory location of the source vectors.
n["fields/velocity/values/u"].set_external(vel_u);
n["fields/velocity/values/v"].set_external(vel_v);

// show the elements of the "u" array
n["fields/velocity/values/u"].print();

// change the first element of the u array (via the vector)

vel_u[0] = 3.14159;

// show the elements of the "u" array again
n["fields/velocity/values"].print();

// mixed ownership semantics allow you to organize,
// extend, and annotate existing data
n["coordsets/coords/type"] = "rectilinear";
n["fields/density/units"] = "g/cc";
n["fields/velocity/units"] = "m/s";

n.print();

1

13
LLNL-PRES-824729

Conduit API Example:
Mixing externally allocated and Conduit owned data

// you can mix external and conduit owned data within a
// Node hierarchy
std::vector<conduit::float64> vel_u(9,1.0);
std::vector<conduit::float64> vel_v(9,1.0);

// use Node::external to init the "u" and "v" nodes of the
// tree to point to the same memory location of the source vectors.
n["fields/velocity/values/u"].set_external(vel_u);
n["fields/velocity/values/v"].set_external(vel_v);

// show the elements of the "u" array
n["fields/velocity/values/u"].print();

// change the first element of the u array (via the vector)

vel_u[0] = 3.14159;

// show the elements of the "u" array again
n["fields/velocity/values"].print();

// mixed ownership semantics allow you to organize,
// extend, and annotate existing data
n["coordsets/coords/type"] = "rectilinear";
n["fields/density/units"] = "g/cc";
n["fields/velocity/units"] = "m/s";

n.print();

1

// you can mix external and conduit owned data within a
// Node hierarchy
std::vector<conduit::float64> vel_u(9,1.0);
std::vector<conduit::float64> vel_v(9,1.0);

// use Node::external to init the "u" and "v" nodes of the
// tree to point to the same memory location of the source vectors.
n["fields/velocity/values/u"].set_external(vel_u);
n["fields/velocity/values/v"].set_external(vel_v);

// show the elements of the "u" array
n["fields/velocity/values/u"].print();

// change the first element of the u array (via the vector)

vel_u[0] = 3.14159;

// show the elements of the "u" array again
n["fields/velocity/values"].print();

// mixed ownership semantics allow you to organize,
// extend, and annotate existing data
n["coordsets/coords/type"] = "rectilinear";
n["fields/density/units"] = "g/cc";
n["fields/velocity/units"] = "m/s";

n.print();

1

[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

u: [3.14159, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
v: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

coordsets:
coords:

values:
x: [0.0, 1.0, 2.0]
y: [0.0, 1.0, 2.0]

type: "rectilinear"
fields:

density:
values: [1.0, 1.0, 1.0, 1.0]
units: "g/cc"

velocity:
values:

u: [3.14159, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
v: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

units: "m/s"

1

[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

u: [3.14159, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
v: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

coordsets:
coords:
values:
x: [0.0, 1.0, 2.0]
y: [0.0, 1.0, 2.0]

type: "rectilinear"
fields:
density:
values: [1.0, 1.0, 1.0, 1.0]
units: "g/cc"

velocity:
values:
u: [3.14159, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
v: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

units: "m/s"

1

14
LLNL-PRES-824729

Conduit API Example:
Mixing externally allocated and Conduit owned data

// you can mix external and conduit owned data within a
// Node hierarchy
std::vector<conduit::float64> vel_u(9,1.0);
std::vector<conduit::float64> vel_v(9,1.0);

// use Node::external to init the "u" and "v" nodes of the
// tree to point to the same memory location of the source vectors.
n["fields/velocity/values/u"].set_external(vel_u);
n["fields/velocity/values/v"].set_external(vel_v);

// show the elements of the "u" array
n["fields/velocity/values/u"].print();

// change the first element of the u array (via the vector)

vel_u[0] = 3.14159;

// show the elements of the "u" array again
n["fields/velocity/values"].print();

// mixed ownership semantics allow you to organize,
// extend, and annotate existing data
n["coordsets/coords/type"] = "rectilinear";
n["fields/density/units"] = "g/cc";
n["fields/velocity/units"] = "m/s";

n.print();

1

[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

u: [3.14159, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
v: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

coordsets:
coords:

values:
x: [0.0, 1.0, 2.0]
y: [0.0, 1.0, 2.0]

type: "rectilinear"
fields:

density:
values: [1.0, 1.0, 1.0, 1.0]
units: "g/cc"

velocity:
values:

u: [3.14159, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
v: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

units: "m/s"

1

15
LLNL-PRES-824729

We aim to provide intuitive C++, Python, and Fortran APIs

C++ Python Fortran

std::vector<float64> den(4,1.0);

conduit::Node n;
n["fields/density/values"] = den;
n["fields/density/units"] = "g/cc";

Node &n_den = n["fields/density"];

float64 *den_ptr = n_den["values"].value();
std::string den_units = n_den["units"].as_string();

n_den.print();

std::cout << "\nDensity (" << den_units << "):\n";
for(index_t i=0; i < 4; i++)
{

std::cout << den_ptr[i] << " ";
}

std::cout << std::endl;

1

import conduit
import numpy as np

den = np.ones(4,dtype="float64")

n = conduit.Node()
n["fields/density/values"] = den
n["fields/density/units"] = "g/cc"

n_density = n.fetch("fields/density")

den_vals = n_density["values"]
den_units = n_density["units"]

print(n_density)

print("\nDensity ({0}):\n{1})".format(den_units,
den_vals))

1

type(node) n, n_den, n_den_units
real(kind=8), dimension(4) :: den
real(kind=8), pointer :: d_arr(:)
character, pointer :: units(:)
integer i
integer units_len

do i = 1,4
den(i) = 1.0

enddo

n = conduit_node_obj_create()
call n%set_path_ptr("fields/density/values", den, 4_8)
call n%set_path("fields/density/units", "g/cc")

n_den = n%fetch("fields/density")

call n_den%fetch_path_as_float64_ptr("values", d_arr)

n_den_units = n_den%fetch("units")
units_len = n_den_units%number_of_elements()

call n_den_units%as_char8_str(units)

call n_den%print()

print *,"Density (", (units(i),i=1,units_len), "):"

do i = 1,4
write (*,"(f5.2,1x)",advance="no") d_arr(i)

enddo
print *

call conduit_node_obj_destroy(n)

1

16
LLNL-PRES-824729

We aim to provide intuitive C++, Python, and Fortran APIs

C++ Python Fortran

values: [1.0, 1.0, 1.0, 1.0]
units: "g/cc"

Density (g/cc):
1 1 1 1

1

values: [1.0, 1.0, 1.0, 1.0]
units: "g/cc"

Density (g/cc):
[1. 1. 1. 1.])

1

values: [1.0, 1.0, 1.0, 1.0]
units: "g/cc"

Density (g/cc):
1.00 1.00 1.00 1.00

1

17
LLNL-PRES-824729

A Node acts as one of following basic roles:
§ Object: An ordered associative array mapping names to children

§ List: An ordered list of unnamed children

§ Leaf: Scalar or 1D Array of bitwidth-specified primitives:
— Signed Integers: int8, int16, int32, int64
— Unsigned Integers: uint8, uint16, uint32, uint64
— Floating Point Numbers: float32, float64

— Strings: char8_str

§ Empty: No data

The heart of Conduit is a hierarchical variant type: Node

Experience with NumPy and JSON motivated Conduit’s data model

18
LLNL-PRES-824729

Beyond setup and access methods, Node also provides methods
to help you easily process and compare trees

§ Inspect the Memory layout of
— Leaves
— Entire Trees

§ Print Tree Summaries

§ Calculate Leaf Summary Metrics

§ Compact / Serialize Trees

§ Iterate over Children

§ Calculate Tree Differences
(`diff` with adjustable tolerance)

§ Parse and Create
— YAML
— JSON

19
LLNL-PRES-824729

Implements interfaces to
Conduit’s in-memory data
model

• Core Objects
• YAML/JSON parsing
• Basic I/O
• Basic transforms

Provides advanced I/O
features built on top of
Conduit’s data model

• File-based I/O: HDF5, Silo
• MPI
• WebSockets
• ZFP

Supports shared higher level
conventions for using Conduit
to represent data

• Computational Meshes
• Multi-component Arrays
• One-to-many Relations
• Example Meshes
• Mesh Transforms

Conduit Relay Blueprint

Conduit’s Relay and Blueprint libraries provide features built on
top of Conduit’s core data model

20
LLNL-PRES-824729

Projects are now leveraging Conduit to support a wide range of
capabilities

§ Creating in-memory data stores

§ Checkpoint restart of simulation
data

§ Node/YAML/JSON based:
— Data APIs
— User APIs

§ Tree + Path-based I/O
and partial I/O

§ Moving complex data with MPI

§ Distributing work with MPI

§ Sharing ad-hoc data between
programs written in multiple
languages
(both in-memory and via files)

§ Sharing simulation mesh data
(both in-memory and via files)

21
LLNL-PRES-824729

What motivated Conduit?

22
LLNL-PRES-824729

At LLNL, Weapon Simulation and Computing (WSC) develops an ecosystem of
applications that provide validated physics modeling capabilities and fields the world-
class HPC platforms needed to fully utilize these applications.

Predictive simulation requires advanced modeling tools and
access to parallel computational horsepower

Multi-physics Application Ecosystem Advanced HPC Platforms

23
LLNL-PRES-824729

Snapshot of Scale and Complexity of LLNL’s WSC CP Program:
§Development Efforts

—~120 Developers
(Physicists, Engineers, Computer Scientists, Software Quality, etc …)
—~15 project teams
—~15 – 30+ year application lifetimes
—~12 million lines of production code across projects
(with more than 100 third-party dependencies)

§Diversity of Programming Languages and HPC Architectures
—C++/C, Fortran, Python, Lua
—Distributed Memory plus Multi-core or Many-core

§Diversity of Data
—Scalars, Arrays, Tables, Contours, CAD Geometry, Meshes

LLNL’s WSC Computational Physics (CP) program develops
production HPC multi-physics simulation applications

CP’s efforts are a microcosm of the broader HPC simulation community

Multi-physics Application Ecosystem

24
LLNL-PRES-824729

The software ecosystem supporting HPC multi-physics
simulations is very complex

Multi-physics Simulation Applications

CS Infrastructure
• Input Parsing
• Steering
• Communication
• Parallelism Abstractions
• I/O
• In Situ Coupling

Physics Libraries
• Material Properties
• Material Models

Numerical Libraries
• Linear Algebra
• Finite Elements

Physics Packages
• Hydrodynamics
• Chemistry
• Thermal radiation
• {and many more …}

Visualization and
Analysis
• Mesh Rendering
• Feature Extraction
• Simulated Diagnostics

Problem Setup and Meshing
• Computational Geometry
• Mesh Generation
• Mesh Decomposition
• Mesh Overlay

Uncertainty
Quantification
• Ensemble Generation
• Parametric Studies
• Statistical Models

Workflow Applications
Simulation & Data
Management
• Workflow Capture
• Data Organization
• Provenance

25
LLNL-PRES-824729

Simulation & Data
Management

Uncertainty Quantification Visualization and AnalysisProblem Setup

Workflow Applications

Multi-physics Simulation Applications

CS Infrastructure Physics Libraries

Numerical Libraries

Physics Packages

A mix of C++, Python, Fortran and Lua are used to develop
applications

C++ Python

C++ Fortran

C++ Fortran

C++
Lua

Python
Fortran

Fortran
C++ Python

Lua

PythonC++ Python Python

26
LLNL-PRES-824729

Simulation & Data
Management

Uncertainty Quantification Visualization and AnalysisProblem Setup

Workflow Applications

Multi-physics Simulation Applications

A mix of custom input languages, UIs, Python and Lua are used
to run and script applications

Custom Input Language

Python

PythonUIs Python UIs PythonUIs
Python

YAML

Lua YAML

27
LLNL-PRES-824729

We are several years into a strategic focus to develop a modular
software foundation for our ecosystem

RAJA Performance Portability Layer (C++)

MFEM Modular parallel library for finite element methods

AXOM Core software components for HPC simulations

Ascent Flyweight in situ viz and analysis for HPC simulations

Spack A flexible package manager for HPC

Conduit Simplified Data Exchange for HPC Simulations

Many of our investments are open source: https://software.llnl.gov

https://software.llnl.gov/

28
LLNL-PRES-824729

How do we share data across these components?

§ Traditional Support:
— Simulations leverage their own bespoke in-memory mesh data models
— File-based I/O libraries evolved into defacto interfaces
— File-based I/O is acceptable for coarse-grain and low-frequency data sharing

§ Future Goals:
— Simplify connecting more components
— Broadly support in-memory sharing

Sharing data effectively is a key challenge to build our modular
ecosystem

We need a flexible in-memory sharing solution to meet our goals

29
LLNL-PRES-824729

§ Describe numeric primitives
— Scalars, strided arrays, etc with explicit precision

§ Support mixed memory ownership semantics
— Enable zero-copy where feasible
— Play friendly with existing data structures in multiple languages

§ Enable higher level conventions
— Hierarchical context (“key/value” + “paths” are a great interface …)
— Human readable descriptions

We identified three key requirements to simplify in-memory
data description

These requirements inspired Conduit

30
LLNL-PRES-824729

§ Embodies our vision of data description as a core capability
— Provide an in-memory foundation on which to build serialization, I/O, and

messaging features

§ Completely runtime focused
— Avoids incompatible (or unshareable) code-generation solutions

§ Provides a multi-language data model
— APIs for C++, Python, C, and Fortran
— YAML/JSON friendly

We designed Conduit with software ecosystem logistics in mind

Philosophy: Share data without massive code infrastructure

31
LLNL-PRES-824729

The Mesh Blueprint

32
LLNL-PRES-824729

§ The Mesh Blueprint is being adopted as a data interface to DOE supported
open source in situ visualization tools:
— Ascent (http://ascent-dav.org/)
— Catalyst (https://catalyst-in-situ.readthedocs.io)
— SENSEI (https://sensei-insitu.org/)

§ VisIt has a database reader for Blueprint-flavored HDF5/JSON/YAML fields

§ MFEM supports converting their mesh data structures to/from Blueprint trees

§ AMReX supports converting their mesh data structures to/from Blueprint trees

Many tools are adopting the Mesh Blueprint as an interface

http://ascent-dav.org/
https://catalyst-in-situ.readthedocs.io/
https://sensei-insitu.org/

33
LLNL-PRES-824729

The software ecosystem supporting HPC multi-physics
simulations is very complex

Multi-physics Simulation Applications

CS Infrastructure
• Input Parsing
• Steering
• Communication
• Parallelism Abstractions
• I/O
• In Situ Coupling

Physics Libraries
• Material Properties
• Material Models

Numerical Libraries
• Linear Algebra
• Finite Elements

Physics Packages
• Hydrodynamics
• Chemistry
• Thermal radiation
• {and many more …}

Visualization and
Analysis
• Mesh Rendering
• Feature Extraction
• Simulated Diagnostics

Problem Setup and Meshing
• Computational Geometry
• Mesh Generation
• Mesh Decomposition
• Mesh Overlay

Uncertainty
Quantification
• Ensemble Generation
• Parametric Studies
• Statistical Models

Workflow Applications
Simulation & Data
Management
• Workflow Capture
• Data Organization
• Provenance

34
LLNL-PRES-824729

The software ecosystem supporting HPC multi-physics
simulations is very complex

Multi-physics Simulation Applications

CS Infrastructure
• Input Parsing
• Steering
• Communication
• Parallelism Abstractions
• I/O
• In Situ Coupling

Physics Libraries
• Material Properties
• Material Models

Numerical Libraries
• Linear Algebra
• Finite Elements

Physics Packages
• Hydrodynamics
• Chemistry
• Thermal radiation
• {and many more …}

Visualization and
Analysis
• Mesh Rendering
• Feature Extraction
• Simulated Diagnostics

Problem Setup and Meshing
• Computational Geometry
• Mesh Generation
• Mesh Decomposition
• Mesh Overlay

Uncertainty
Quantification
• Ensemble Generation
• Parametric Studies
• Statistical Models

Workflow Applications
Simulation & Data
Management
• Workflow Capture
• Data Organization
• Provenance

“Sharing” mesh data requires agreement
on how to represent meshes ...

35
LLNL-PRES-824729

§ Many simulation applications leverage their own bespoke in-memory mesh
data models.

§ Other tools leverage a range of mesh-focused toolkits, frameworks, and APIs
including: VTK, VTK-m, MFEM, and SAMRAI

§ Many powerful analysis tools are mesh agnostic (NumPy, PyTorch, etc) and
recasting bespoke mesh data into these tools is a barrier to wide use

Components of the ecosystem implement and leverage a wide
range of mesh data structures and APIs

We never expect a single full fledged API to emerge that
will cover all use cases across the ecosystem

36
LLNL-PRES-824729

The Mesh Blueprint aims to provide an abstract, multi-hub
interface to simplify interoperability

Sim Code 1

Pre-Conduit/Blueprint Infrastructure

Sim Code 2 Sim Code 3

Library Code A Library Code B Library Code C

Post-Conduit/Blueprint Infrastructure

Sim Code 1 Sim Code 2 Sim Code 3

Library Code A Library Code B Library Code C

Mesh Type α Mesh Type β Mesh Type γ

37
LLNL-PRES-824729

Visualization Tool

Data description simplifies connecting software components
Example: Sharing a Vector Field

Simulation

38
LLNL-PRES-824729

Data description simplifies connecting software components
Example: Sharing a Vector Field

Simulation

Simulation Data
Structures for
a Vector Field

Visualization Tool

Visualization Library
Data Structures for

a Vector Field

mcarray
(Multi-component Array)

39
LLNL-PRES-824729

Simulation

Data description simplifies connecting software components
Example: Sharing a Vector Field

mcarray
(Multi-component Array)

Vector Field {u,v}
(Many possibilities!)

Contiguous: u u v v

Interleaved:

Separate:

Arbitrary:

u v u v

u u
v v

u u
v v

Visualization Tool

Visualization Library
Data Structures for

a Vector Field

40
LLNL-PRES-824729

Simulation

Data description simplifies connecting software components
Example: Sharing a Vector Field

mcarray
(Multi-component Array)

Vector Field {u,v}
(Many possibilities!)

Contiguous: u u v v

Interleaved:

Separate:

Arbitrary:

u v u v

u u
v v

u u
v v

Visualization Tool

41
LLNL-PRES-824729

Simulation

Data description simplifies connecting software components
Example: Sharing a Vector Field

mcarray
(Multi-component Array)

Vector Field {u,v}
(Many possibilities!)

Contiguous: u u v v

Interleaved:

Separate:

Arbitrary:

u v u v

u u
v v

u u
v v

Visualization Tool

vtkDataArray Classes
(Also many possibilities!)

42
LLNL-PRES-824729

Data description simplifies connecting software components
Example: Sharing a Vector Field

Simulation Visualization Tool

mcarray
(Multi-component Array)

Describe as is

Cases your API supports:
Zero copy and/or adapt

Arbitrary / Too complex:
Transform to simpler
representation

Use Memory Inspection

43
LLNL-PRES-824729

Takeaway: Conduit makes you feel safe

Simulation and Tool
Data Structures in the Wild

View through
Conduit Lens

44
LLNL-PRES-824729

Conduit provides an in-situ data layer to minimize unnecessary data copying/movement
and Blueprint provides a standard schema for communicating mesh data

The Mesh Blueprint is a set of conventions that outline a
hierarchical structure (or schema) to describe mesh data

JSON Representation Visualization

Mesh Blueprint Example: A Simple Rectilinear Grid

45
LLNL-PRES-824729

The Mesh Blueprint supports mesh constructs common in
several full featured mesh data models

Ideas were shaped by surveying projects including: ADIOS, BoxLib, Chombo, Damaris,
EAVL, Exodus, ITAPS, MFEM, SAF, SAMRAI, Silo, VisIt’s AVT, VTK, VTK-m, Xdmf.

Mesh

Coordinate Sets
Sets of points in space

Fields
Data values associated with

elements in a topology

Topologies
Collections of mesh elements
defined on a coordinate set

46
LLNL-PRES-824729

We are steadily filling out the Blueprint to cover the wide range
of mesh descriptions required by the ecosystem

https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html

Topologies: 1D/2D/3D - Uniform, Rectilinear, Structured, Unstructured, Polygonal, Polyhedral, AMR

Fields: Scalar, Vector, Multi-material

https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html

47
LLNL-PRES-824729

We are steadily filling out the Blueprint to cover the wide range
of mesh descriptions required by the ecosystem
§ Coordinate Sets

— 1D/2D/3D
— Cartesian, Cylindrical, Spherical
— Implicit: Uniform, Rectilinear
— Explicit

§ Topologies
— Implicit: Points, Uniform, Rectilinear,

Structured
— Unstructured

[Points, Lines, Quads, Tris, Tets, Hexs]
— Optional MFEM Grid Function support
— Arbitrary Polygonal and Polyhedral
— Unstructured heterogenous element shapes

(Planned for future)

§ Fields
— Vertex or Element associated
— Multi-component field arrays
— Optional MFEM Grid Function Basis support
— Sparse representations for multi-material field

arrays
— Multi-dimensional field arrays

(Planned for future)

§ Domain Decomposition Info
— Basic State Info [Domain Ids]
— Domain Adjacency Info for Unstructured Meshes
— Domain Adjacency Info for Structured Meshes
— Nesting Info for Block-Structured AMR Meshes

48
LLNL-PRES-824729

The Mesh Blueprint supports many different styles of mesh
metadata and supplies transform functions therebetween

Fields/Materials

Element Dominant:

Material Dominant:

Everything In Between

Bit Width:

Data Ordering:

Data Indirection:

A VFs a
1

a
2 0 0

B VFs 0 b
1

b
2 0

C VFs 0 0 c
1

c
2

A VFs a
1

a
2

B VFs b
1

b
2

C VFs c
1

c
2

A EIDs 0 1

B EIDS 1 2

C EIDS 2 3

Topologies

Structured (Rectilinear):

Unstructured:

X Coords 0 1

Y Coords 0 1

Topology (implicit)

X Coords

Y Coords

Topology

0 1 0 1

0 0 1 1

0 1 3 2

x
1 … x

N
y
1 … y

N

x
1

y
1 … … x

N
y
N

Contig.

Interl.

0xDEADBEE
F

0x0000000
0

int

long
0xDEADBEE
F

sparse v
N … v

1 …

indices i1 i2

compact v
1

v
2 … …

v
2 …

… i
N

… v
N

49
LLNL-PRES-824729

The structure of the Blueprint is designed with
distributed-memory parallelism in mind

Domain DecompositionFull Dataset

Any info required to describe to domain decomposition, nesting, or abutment is local

50
LLNL-PRES-824729

§ Methods which verify if data conforms to
blessed conventions at runtime
— Provides detailed information for non-conforming

data

§ Methods that apply basic data transforms to
conforming data, including:
— Coordinate Set and Topology transforms

(e.g. Implicit Uniform to Explicit Coordinates)
— Memory layout transforms

(e.g. Contiguous to Interleaved to array layouts)

§ Methods that generate mesh examples, aiming
to cover the range of supported meshes

The Conduit Blueprint library facilitates using Mesh Blueprint
data via three important capabilities

Mesh Blueprint Examples generated
by the Conduit Blueprint Library

51
LLNL-PRES-824729

§ Let’s look at some examples of how to create and verify Blueprint Meshes

§ https://ascent.readthedocs.io/en/latest/Tutorial_Intro_Conduit_Blueprint.html

§ (Demo of Ascent Tutorial Conduit Blueprint Jupyter Notebook)

Demo: Creating Simple Blueprint Meshes

https://ascent.readthedocs.io/en/latest/Tutorial_Intro_Conduit_Blueprint.html

52
LLNL-PRES-824729

Conduit API Example:
Our first example was almost a Blueprint Mesh …

// extend our example to a blueprint compliant mesh
n["topologies/topo/type"] = "rectilinear";
n["topologies/topo/coordset"] = "coords";

n["fields/density/association"] = "element";
n["fields/density/topology"] = "topo";

n["fields/velocity/association"] = "vertex";
n["fields/velocity/topology"] = "topo";

n.print();

conduit::Node info;
if(conduit::blueprint::mesh::verify(n,info))
{

std::cout << "Mesh Blueprint Verify Success!" << std::endl;
}
else
{

std::cout << "Mesh Blueprint Verify Failure!" << std::endl;
info.print();

}

conduit::relay::io::blueprint::save_mesh(n,"my_mesh_yaml","yaml");

1

coordsets:
coords:
values:
x: [0.0, 1.0, 2.0]
y: [0.0, 1.0, 2.0]

type: "rectilinear"
fields:
density:
values: [1.0, 1.0, 1.0, 1.0]
units: "g/cc"
association: "element"
topology: "topo"

velocity:
values:
u: [3.14159, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
v: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

units: "m/s"
association: "vertex"
topology: "topo"

topologies:
topo:
type: "rectilinear"
coordset: "coords"

Mesh Blueprint Verify Success!

1

53
LLNL-PRES-824729

§ Conduit focuses on in-memory description and other use cases are built on
that foundation

§ Conduit and the Mesh Blueprint support LLNL WSC’s strategic push to
develop a modular simulation software ecosystem

§ The Mesh Blueprint is being adopted as a data interface to DOE supported
open source visualization tools

§ Conduit Github: https://github.com/llnl/conduit

§ Cyrus Contact Email: cyrush@llnl.gov

Conclusion: We built Conduit to simplify data description
and sharing across software components

https://github.com/llnl/conduit
mailto:cyrush@llnl.gov

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S.
Department of Energy’s Office of Science and National Nuclear Security Administration, responsible for
delivering a capable exascale ecosystem, including software, applications, and hardware technology,
to support the nation’s exascale computing imperative.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC

55
LLNL-PRES-824729

Backup slides

56
LLNL-PRES-824729

LLNL programs actively develop and leverage open source
software

https://software.llnl.gov

§ DOE ASC(I) and ASCR have
explicitly embraced and
promoted open source software
development since 2002

§ Not all our software projects can
be open sourced, but open
source is a key part of our
development strategy

§ Open source and open
development amplify:
Collaboration, Adoption, and
Competition

https://software.llnl.gov/

57
LLNL-PRES-824729

Creating the Mesh Blueprint followed the flavor of a Stone Soup
Model

58
LLNL-PRES-824729

§ Summer 2015: The VisIt team expanded these ideas to create a mesh
interface for a new in-situ visualization proxy called “Strawman”

The Blueprint started with experiments using Conduit to
describe meshes for visualization

“Strawman: A Batch In Situ Visualization and Analysis Infrastructure for Multi-Physics Simulation Codes”
In Proceedings of ISAV 2015 (SC15)Workshop, Austin TX, November 2015

	
			

Strawman

	
	

Simulation

Conduit	
In-Core	Data	Descrip0on	

In Situ Pipelines

EAVL,	VTK-m		
Data	Model	+	Rendering	

Mesh	Data	 Actions

IceT	
Parallel	Compositing	

Streaming	
Web	Client	Image	Files	Image	Files	Image	Files	

Rendered	Images	

	
	

Publish Execute

“Strawman” Software Architecture In-situ render of Cloverleaf3D data Inspiration for Viz Proxy App

59
LLNL-PRES-824729

§ Fall 2015 – Fall 2016: The Axom and MARBL teams adopted and helped
expand Blueprint to describe meshes for checkpoint restarts supporting
both of MARBL’s hydrodynamics packages (Supported an ATDM FY16 L2)

Success with visualization use cases helped demonstrate that
the Blueprint was viable for use directly in simulations

HDF5 Checkpoint Restart Files

Blueprint
(“Mesh-aware” data description)

Sidre: In-memory Datastore
(Centralized data shared by applications,

Axom components, tools, etc.)

Axom
High-order Finite

Element ALE Hydro
High-order Finite
Difference Hydro

60
LLNL-PRES-824729

§ Fall 2016 – Fall 2017: A Blueprint interface for the Carter mesh overlay
tool was developed, which enabled in-situ mesh overlay from MARBL’s
high-order ALE hydrodynamics package to MARBL’s high-order finite
difference hydrodynamics package (Supported an ATDM FY17 L2)

Success with visualization use cases helped demonstrate that
the Blueprint was viable for use directly in simulations

Axom Sidre: In-memory Datastore High-order Finite
Element ALE Hydro

High-order Finite
Difference Hydro

Mesh Overlay

(Carter)

Blueprint Blueprint

Low-Order Refine

MFEM refine Conduit-Carter

61
LLNL-PRES-824729

§ Fall 2017 – Present: Blueprint is the mesh interface for Ascent, an in-
situ visualization and analysis infrastructure developed as part of the
ALPINE ECP project

Adoption of the Blueprint in MARBL bolstered the case for using
Blueprint in the ALPINE ECP project

“The ALPINE In Situ Infrastructure: Ascending from the Ashes of Strawman”
In Proceedings of ISAV 2017 (SC17) Workshop, Denver CO, November 2017

https://github.com/alpine-dav/ascent
https://ascent.readthedocs.io/

ALPINE Ascent

Simulation

Declare
• Scenes
• Pipelines
• Extracts

Image	
Files

Image	
Files

Pictures
Data

Scenes
(Render Pictures)

Extracts
(Capture Data)

Pipelines
(Transform Data)

Actions

Publish

Mesh	Data

Ascent Software Architecture In-situ render from MARBL Evolved from “Strawman”

https://ascent.readthedocs.io/
https://ascent.readthedocs.io/

